Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,336 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
# Copyright (c) Facebook, Inc. and its affiliates.
import contextlib
import io
import logging
import os
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Dict, Iterable, List, Optional
from fvcore.common.timer import Timer
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.structures import BoxMode
from detectron2.utils.file_io import PathManager
from ..utils import maybe_prepend_base_path
DENSEPOSE_MASK_KEY = "dp_masks"
DENSEPOSE_IUV_KEYS_WITHOUT_MASK = ["dp_x", "dp_y", "dp_I", "dp_U", "dp_V"]
DENSEPOSE_CSE_KEYS_WITHOUT_MASK = ["dp_x", "dp_y", "dp_vertex", "ref_model"]
DENSEPOSE_ALL_POSSIBLE_KEYS = set(
DENSEPOSE_IUV_KEYS_WITHOUT_MASK + DENSEPOSE_CSE_KEYS_WITHOUT_MASK + [DENSEPOSE_MASK_KEY]
)
DENSEPOSE_METADATA_URL_PREFIX = "https://dl.fbaipublicfiles.com/densepose/data/"
@dataclass
class CocoDatasetInfo:
name: str
images_root: str
annotations_fpath: str
DATASETS = [
CocoDatasetInfo(
name="densepose_coco_2014_train",
images_root="coco/train2014",
annotations_fpath="coco/annotations/densepose_train2014.json",
),
CocoDatasetInfo(
name="densepose_coco_2014_minival",
images_root="coco/val2014",
annotations_fpath="coco/annotations/densepose_minival2014.json",
),
CocoDatasetInfo(
name="densepose_coco_2014_minival_100",
images_root="coco/val2014",
annotations_fpath="coco/annotations/densepose_minival2014_100.json",
),
CocoDatasetInfo(
name="densepose_coco_2014_valminusminival",
images_root="coco/val2014",
annotations_fpath="coco/annotations/densepose_valminusminival2014.json",
),
CocoDatasetInfo(
name="densepose_coco_2014_train_cse",
images_root="coco/train2014",
annotations_fpath="coco_cse/densepose_train2014_cse.json",
),
CocoDatasetInfo(
name="densepose_coco_2014_minival_cse",
images_root="coco/val2014",
annotations_fpath="coco_cse/densepose_minival2014_cse.json",
),
CocoDatasetInfo(
name="densepose_coco_2014_minival_100_cse",
images_root="coco/val2014",
annotations_fpath="coco_cse/densepose_minival2014_100_cse.json",
),
CocoDatasetInfo(
name="densepose_coco_2014_valminusminival_cse",
images_root="coco/val2014",
annotations_fpath="coco_cse/densepose_valminusminival2014_cse.json",
),
CocoDatasetInfo(
name="densepose_chimps",
images_root="densepose_chimps/images",
annotations_fpath="densepose_chimps/densepose_chimps_densepose.json",
),
CocoDatasetInfo(
name="densepose_chimps_cse_train",
images_root="densepose_chimps/images",
annotations_fpath="densepose_chimps/densepose_chimps_cse_train.json",
),
CocoDatasetInfo(
name="densepose_chimps_cse_val",
images_root="densepose_chimps/images",
annotations_fpath="densepose_chimps/densepose_chimps_cse_val.json",
),
CocoDatasetInfo(
name="posetrack2017_train",
images_root="posetrack2017/posetrack_data_2017",
annotations_fpath="posetrack2017/densepose_posetrack_train2017.json",
),
CocoDatasetInfo(
name="posetrack2017_val",
images_root="posetrack2017/posetrack_data_2017",
annotations_fpath="posetrack2017/densepose_posetrack_val2017.json",
),
CocoDatasetInfo(
name="lvis_v05_train",
images_root="coco/train2017",
annotations_fpath="lvis/lvis_v0.5_plus_dp_train.json",
),
CocoDatasetInfo(
name="lvis_v05_val",
images_root="coco/val2017",
annotations_fpath="lvis/lvis_v0.5_plus_dp_val.json",
),
]
BASE_DATASETS = [
CocoDatasetInfo(
name="base_coco_2017_train",
images_root="coco/train2017",
annotations_fpath="coco/annotations/instances_train2017.json",
),
CocoDatasetInfo(
name="base_coco_2017_val",
images_root="coco/val2017",
annotations_fpath="coco/annotations/instances_val2017.json",
),
CocoDatasetInfo(
name="base_coco_2017_val_100",
images_root="coco/val2017",
annotations_fpath="coco/annotations/instances_val2017_100.json",
),
]
def get_metadata(base_path: Optional[str]) -> Dict[str, Any]:
"""
Returns metadata associated with COCO DensePose datasets
Args:
base_path: Optional[str]
Base path used to load metadata from
Returns:
Dict[str, Any]
Metadata in the form of a dictionary
"""
meta = {
"densepose_transform_src": maybe_prepend_base_path(base_path, "UV_symmetry_transforms.mat"),
"densepose_smpl_subdiv": maybe_prepend_base_path(base_path, "SMPL_subdiv.mat"),
"densepose_smpl_subdiv_transform": maybe_prepend_base_path(
base_path,
"SMPL_SUBDIV_TRANSFORM.mat",
),
}
return meta
def _load_coco_annotations(json_file: str):
"""
Load COCO annotations from a JSON file
Args:
json_file: str
Path to the file to load annotations from
Returns:
Instance of `pycocotools.coco.COCO` that provides access to annotations
data
"""
from pycocotools.coco import COCO
logger = logging.getLogger(__name__)
timer = Timer()
with contextlib.redirect_stdout(io.StringIO()):
coco_api = COCO(json_file)
if timer.seconds() > 1:
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
return coco_api
def _add_categories_metadata(dataset_name: str, categories: List[Dict[str, Any]]):
meta = MetadataCatalog.get(dataset_name)
meta.categories = {c["id"]: c["name"] for c in categories}
logger = logging.getLogger(__name__)
logger.info("Dataset {} categories: {}".format(dataset_name, meta.categories))
def _verify_annotations_have_unique_ids(json_file: str, anns: List[List[Dict[str, Any]]]):
if "minival" in json_file:
# Skip validation on COCO2014 valminusminival and minival annotations
# The ratio of buggy annotations there is tiny and does not affect accuracy
# Therefore we explicitly white-list them
return
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format(
json_file
)
def _maybe_add_bbox(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
if "bbox" not in ann_dict:
return
obj["bbox"] = ann_dict["bbox"]
obj["bbox_mode"] = BoxMode.XYWH_ABS
def _maybe_add_segm(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
if "segmentation" not in ann_dict:
return
segm = ann_dict["segmentation"]
if not isinstance(segm, dict):
# filter out invalid polygons (< 3 points)
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
if len(segm) == 0:
return
obj["segmentation"] = segm
def _maybe_add_keypoints(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
if "keypoints" not in ann_dict:
return
keypts = ann_dict["keypoints"] # list[int]
for idx, v in enumerate(keypts):
if idx % 3 != 2:
# COCO's segmentation coordinates are floating points in [0, H or W],
# but keypoint coordinates are integers in [0, H-1 or W-1]
# Therefore we assume the coordinates are "pixel indices" and
# add 0.5 to convert to floating point coordinates.
keypts[idx] = v + 0.5
obj["keypoints"] = keypts
def _maybe_add_densepose(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
for key in DENSEPOSE_ALL_POSSIBLE_KEYS:
if key in ann_dict:
obj[key] = ann_dict[key]
def _combine_images_with_annotations(
dataset_name: str,
image_root: str,
img_datas: Iterable[Dict[str, Any]],
ann_datas: Iterable[Iterable[Dict[str, Any]]],
):
ann_keys = ["iscrowd", "category_id"]
dataset_dicts = []
contains_video_frame_info = False
for img_dict, ann_dicts in zip(img_datas, ann_datas):
record = {}
record["file_name"] = os.path.join(image_root, img_dict["file_name"])
record["height"] = img_dict["height"]
record["width"] = img_dict["width"]
record["image_id"] = img_dict["id"]
record["dataset"] = dataset_name
if "frame_id" in img_dict:
record["frame_id"] = img_dict["frame_id"]
record["video_id"] = img_dict.get("vid_id", None)
contains_video_frame_info = True
objs = []
for ann_dict in ann_dicts:
assert ann_dict["image_id"] == record["image_id"]
assert ann_dict.get("ignore", 0) == 0
obj = {key: ann_dict[key] for key in ann_keys if key in ann_dict}
_maybe_add_bbox(obj, ann_dict)
_maybe_add_segm(obj, ann_dict)
_maybe_add_keypoints(obj, ann_dict)
_maybe_add_densepose(obj, ann_dict)
objs.append(obj)
record["annotations"] = objs
dataset_dicts.append(record)
if contains_video_frame_info:
create_video_frame_mapping(dataset_name, dataset_dicts)
return dataset_dicts
def get_contiguous_id_to_category_id_map(metadata):
cat_id_2_cont_id = metadata.thing_dataset_id_to_contiguous_id
cont_id_2_cat_id = {}
for cat_id, cont_id in cat_id_2_cont_id.items():
if cont_id in cont_id_2_cat_id:
continue
cont_id_2_cat_id[cont_id] = cat_id
return cont_id_2_cat_id
def maybe_filter_categories_cocoapi(dataset_name, coco_api):
meta = MetadataCatalog.get(dataset_name)
cont_id_2_cat_id = get_contiguous_id_to_category_id_map(meta)
cat_id_2_cont_id = meta.thing_dataset_id_to_contiguous_id
# filter categories
cats = []
for cat in coco_api.dataset["categories"]:
cat_id = cat["id"]
if cat_id not in cat_id_2_cont_id:
continue
cont_id = cat_id_2_cont_id[cat_id]
if (cont_id in cont_id_2_cat_id) and (cont_id_2_cat_id[cont_id] == cat_id):
cats.append(cat)
coco_api.dataset["categories"] = cats
# filter annotations, if multiple categories are mapped to a single
# contiguous ID, use only one category ID and map all annotations to that category ID
anns = []
for ann in coco_api.dataset["annotations"]:
cat_id = ann["category_id"]
if cat_id not in cat_id_2_cont_id:
continue
cont_id = cat_id_2_cont_id[cat_id]
ann["category_id"] = cont_id_2_cat_id[cont_id]
anns.append(ann)
coco_api.dataset["annotations"] = anns
# recreate index
coco_api.createIndex()
def maybe_filter_and_map_categories_cocoapi(dataset_name, coco_api):
meta = MetadataCatalog.get(dataset_name)
category_id_map = meta.thing_dataset_id_to_contiguous_id
# map categories
cats = []
for cat in coco_api.dataset["categories"]:
cat_id = cat["id"]
if cat_id not in category_id_map:
continue
cat["id"] = category_id_map[cat_id]
cats.append(cat)
coco_api.dataset["categories"] = cats
# map annotation categories
anns = []
for ann in coco_api.dataset["annotations"]:
cat_id = ann["category_id"]
if cat_id not in category_id_map:
continue
ann["category_id"] = category_id_map[cat_id]
anns.append(ann)
coco_api.dataset["annotations"] = anns
# recreate index
coco_api.createIndex()
def create_video_frame_mapping(dataset_name, dataset_dicts):
mapping = defaultdict(dict)
for d in dataset_dicts:
video_id = d.get("video_id")
if video_id is None:
continue
mapping[video_id].update({d["frame_id"]: d["file_name"]})
MetadataCatalog.get(dataset_name).set(video_frame_mapping=mapping)
def load_coco_json(annotations_json_file: str, image_root: str, dataset_name: str):
"""
Loads a JSON file with annotations in COCO instances format.
Replaces `detectron2.data.datasets.coco.load_coco_json` to handle metadata
in a more flexible way. Postpones category mapping to a later stage to be
able to combine several datasets with different (but coherent) sets of
categories.
Args:
annotations_json_file: str
Path to the JSON file with annotations in COCO instances format.
image_root: str
directory that contains all the images
dataset_name: str
the name that identifies a dataset, e.g. "densepose_coco_2014_train"
extra_annotation_keys: Optional[List[str]]
If provided, these keys are used to extract additional data from
the annotations.
"""
coco_api = _load_coco_annotations(PathManager.get_local_path(annotations_json_file))
_add_categories_metadata(dataset_name, coco_api.loadCats(coco_api.getCatIds()))
# sort indices for reproducible results
img_ids = sorted(coco_api.imgs.keys())
# imgs is a list of dicts, each looks something like:
# {'license': 4,
# 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
# 'file_name': 'COCO_val2014_000000001268.jpg',
# 'height': 427,
# 'width': 640,
# 'date_captured': '2013-11-17 05:57:24',
# 'id': 1268}
imgs = coco_api.loadImgs(img_ids)
logger = logging.getLogger(__name__)
logger.info("Loaded {} images in COCO format from {}".format(len(imgs), annotations_json_file))
# anns is a list[list[dict]], where each dict is an annotation
# record for an object. The inner list enumerates the objects in an image
# and the outer list enumerates over images.
anns = [coco_api.imgToAnns[img_id] for img_id in img_ids]
_verify_annotations_have_unique_ids(annotations_json_file, anns)
dataset_records = _combine_images_with_annotations(dataset_name, image_root, imgs, anns)
return dataset_records
def register_dataset(dataset_data: CocoDatasetInfo, datasets_root: Optional[str] = None):
"""
Registers provided COCO DensePose dataset
Args:
dataset_data: CocoDatasetInfo
Dataset data
datasets_root: Optional[str]
Datasets root folder (default: None)
"""
annotations_fpath = maybe_prepend_base_path(datasets_root, dataset_data.annotations_fpath)
images_root = maybe_prepend_base_path(datasets_root, dataset_data.images_root)
def load_annotations():
return load_coco_json(
annotations_json_file=annotations_fpath,
image_root=images_root,
dataset_name=dataset_data.name,
)
DatasetCatalog.register(dataset_data.name, load_annotations)
MetadataCatalog.get(dataset_data.name).set(
json_file=annotations_fpath,
image_root=images_root,
**get_metadata(DENSEPOSE_METADATA_URL_PREFIX)
)
def register_datasets(
datasets_data: Iterable[CocoDatasetInfo], datasets_root: Optional[str] = None
):
"""
Registers provided COCO DensePose datasets
Args:
datasets_data: Iterable[CocoDatasetInfo]
An iterable of dataset datas
datasets_root: Optional[str]
Datasets root folder (default: None)
"""
for dataset_data in datasets_data:
register_dataset(dataset_data, datasets_root)
|