Leffa / app.py
Himanshu-AT
fix: handle image input types in leffa_predict function
810339f
raw
history blame
12.3 kB
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download
from leffa.transform import LeffaTransform
from leffa.model import LeffaModel
from leffa.inference import LeffaInference
from utils.garment_agnostic_mask_predictor import AutoMasker
from utils.densepose_predictor import DensePosePredictor
from utils.utils import resize_and_center
import spaces
import requests
from io import BytesIO
import gradio as gr
print("Imports done, downloading the model...")
# Download checkpoints
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
mask_predictor = AutoMasker(
densepose_path="./ckpts/densepose",
schp_path="./ckpts/schp",
)
densepose_predictor = DensePosePredictor(
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
weights_path="./ckpts/densepose/model_final_162be9.pkl",
)
vt_model = LeffaModel(
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
pretrained_model="./ckpts/virtual_tryon.pth",
)
vt_inference = LeffaInference(model=vt_model)
pt_model = LeffaModel(
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
pretrained_model="./ckpts/pose_transfer.pth",
)
pt_inference = LeffaInference(model=pt_model)
print("Model downloaded, ready to serve!")
@spaces.GPU
def leffa_predict(src_image_path, ref_image_path, control_type):
assert control_type in [
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
if isinstance(src_image_path, str):
src_image = Image.open(src_image_path)
else:
src_image = src_image_path
if isinstance(ref_image_path, str):
ref_image = Image.open(ref_image_path)
else:
ref_image = ref_image_path
src_image = resize_and_center(src_image, 768, 1024)
ref_image = resize_and_center(ref_image, 768, 1024)
src_image_array = np.array(src_image)
ref_image_array = np.array(ref_image)
# Mask
if control_type == "virtual_tryon":
src_image = src_image.convert("RGB")
mask = mask_predictor(src_image, "upper")["mask"]
elif control_type == "pose_transfer":
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
# DensePose
src_image_iuv_array = densepose_predictor.predict_iuv(src_image_array)
src_image_seg_array = densepose_predictor.predict_seg(src_image_array)
src_image_iuv = Image.fromarray(src_image_iuv_array)
src_image_seg = Image.fromarray(src_image_seg_array)
if control_type == "virtual_tryon":
densepose = src_image_seg
elif control_type == "pose_transfer":
densepose = src_image_iuv
# Leffa
transform = LeffaTransform()
data = {
"src_image": [src_image],
"ref_image": [ref_image],
"mask": [mask],
"densepose": [densepose],
}
data = transform(data)
if control_type == "virtual_tryon":
inference = vt_inference
elif control_type == "pose_transfer":
inference = pt_inference
output = inference(data)
gen_image = output["generated_image"][0]
# gen_image.save("gen_image.png")
return np.array(gen_image)
@spaces.GPU
def leffa_predict_vt(src_image_path, ref_image_path):
return leffa_predict(src_image_path, ref_image_path, "virtual_tryon")
@spaces.GPU
def leffa_predict_vt_image_url(person_url, garment_url):
if not person_url or not garment_url:
return None
src_image = fetch_image_from_url(person_url)
if not src_image:
return None
print("fetched person image")
ref_image = fetch_image_from_url(garment_url)
if not ref_image:
return None
print("fetched garment image")
return leffa_predict(src_image, ref_image, "virtual_tryon")
@spaces.GPU
def leffa_predict_pt(src_image_path, ref_image_path):
return leffa_predict(src_image_path, ref_image_path, "pose_transfer")
def fetch_image_from_url(url):
try:
response = requests.get(url)
img = Image.open(BytesIO(response.content))
return img
except Exception as e:
print(e)
return None
def handle_image_input(image_input):
if image_input.startswith('http'):
return fetch_image_from_url(image_input)
else:
return Image.open(image_input)
# if __name__ == "__main__":
# # import sys
# # src_image_path = sys.argv[1]
# # ref_image_path = sys.argv[2]
# # control_type = sys.argv[3]
# # leffa_predict(src_image_path, ref_image_path, control_type)
# title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
# link = "[📚 Paper](https://arxiv.org/abs/2412.08486) - [🔥 Demo](https://huggingface.co/spaces/franciszzj/Leffa) - [🤗 Model](https://huggingface.co/franciszzj/Leffa)"
# description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)."
# note = "Note: The models used in the demo are trained solely on academic datasets. Virtual try-on uses VITON-HD, and pose transfer uses DeepFashion."
# with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo:
# gr.Markdown(title)
# gr.Markdown(link)
# gr.Markdown(description)
# with gr.Tab("Control Appearance (Virtual Try-on)"):
# with gr.Row():
# with gr.Column():
# gr.Markdown("#### Person Image")
# vt_src_image = gr.Image(
# sources=["upload", "url"],
# type="filepath",
# label="Person Image",
# width=512,
# height=512,
# )
# gr.Examples(
# inputs=vt_src_image,
# examples_per_page=5,
# examples=["./ckpts/examples/person1/01350_00.jpg",
# "./ckpts/examples/person1/01376_00.jpg",
# "./ckpts/examples/person1/01416_00.jpg",
# "./ckpts/examples/person1/05976_00.jpg",
# "./ckpts/examples/person1/06094_00.jpg",],
# )
# with gr.Column():
# gr.Markdown("#### Garment Image")
# vt_ref_image = gr.Image(
# sources=["upload", "url"],
# type="filepath",
# label="Garment Image",
# width=512,
# height=512,
# )
# gr.Examples(
# inputs=vt_ref_image,
# examples_per_page=5,
# examples=["./ckpts/examples/garment/01449_00.jpg",
# "./ckpts/examples/garment/01486_00.jpg",
# "./ckpts/examples/garment/01853_00.jpg",
# "./ckpts/examples/garment/02070_00.jpg",
# "./ckpts/examples/garment/03553_00.jpg",],
# )
# with gr.Column():
# gr.Markdown("#### Generated Image")
# vt_gen_image = gr.Image(
# label="Generated Image",
# width=512,
# height=512,
# )
# with gr.Row():
# vt_gen_button = gr.Button("Generate")
# vt_gen_button.click(fn=leffa_predict_vt, inputs=[
# vt_src_image, vt_ref_image], outputs=[vt_gen_image])
# with gr.Tab("Control Pose (Pose Transfer)"):
# with gr.Row():
# with gr.Column():
# gr.Markdown("#### Person Image")
# pt_ref_image = gr.Image(
# sources=["upload"],
# type="filepath",
# label="Person Image",
# width=512,
# height=512,
# )
# gr.Examples(
# inputs=pt_ref_image,
# examples_per_page=5,
# examples=["./ckpts/examples/person1/01350_00.jpg",
# "./ckpts/examples/person1/01376_00.jpg",
# "./ckpts/examples/person1/01416_00.jpg",
# "./ckpts/examples/person1/05976_00.jpg",
# "./ckpts/examples/person1/06094_00.jpg",],
# )
# with gr.Column():
# gr.Markdown("#### Target Pose Person Image")
# pt_src_image = gr.Image(
# sources=["upload"],
# type="filepath",
# label="Target Pose Person Image",
# width=512,
# height=512,
# )
# gr.Examples(
# inputs=pt_src_image,
# examples_per_page=5,
# examples=["./ckpts/examples/person2/01850_00.jpg",
# "./ckpts/examples/person2/01875_00.jpg",
# "./ckpts/examples/person2/02532_00.jpg",
# "./ckpts/examples/person2/02902_00.jpg",
# "./ckpts/examples/person2/05346_00.jpg",],
# )
# with gr.Column():
# gr.Markdown("#### Generated Image")
# pt_gen_image = gr.Image(
# label="Generated Image",
# width=512,
# height=512,
# )
# with gr.Row():
# pose_transfer_gen_button = gr.Button("Generate")
# pose_transfer_gen_button.click(fn=leffa_predict_pt, inputs=[
# pt_src_image, pt_ref_image], outputs=[pt_gen_image])
# gr.Markdown(note)
# demo.launch(share=True, server_port=7860)
def create_demo():
title = "## Virtual Try-on with URLs"
description = "Enter URLs for both the person image and the garment image to generate a virtual try-on result."
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink)) as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
person_url = gr.Textbox(
label="Person Image URL",
placeholder="Enter URL of the person image..."
)
garment_url = gr.Textbox(
label="Garment Image URL",
placeholder="Enter URL of the garment image..."
)
# Example URLs
gr.Examples(
inputs=[person_url, garment_url],
examples=[
["https://example.com/person1.jpg", "https://example.com/garment1.jpg"],
["https://example.com/person2.jpg", "https://example.com/garment2.jpg"],
],
label="Example URLs"
)
generate_btn = gr.Button("Generate Try-on")
with gr.Column():
output_image = gr.Image(
label="Generated Result",
width=512,
height=512
)
generate_btn.click(
fn=leffa_predict_vt_image_url,
inputs=[person_url, garment_url],
outputs=output_image
)
gr.Markdown("Note: This model is trained solely on academic datasets (VITON-HD).")
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(share=True, server_port=7860)