franciszzj's picture
init code
b213d84
raw
history blame
8.13 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import math
from typing import List, Tuple, Union
import torch
from detectron2.layers import batched_nms, cat, move_device_like
from detectron2.structures import Boxes, Instances
logger = logging.getLogger(__name__)
def _is_tracing():
# (fixed in TORCH_VERSION >= 1.9)
if torch.jit.is_scripting():
# https://github.com/pytorch/pytorch/issues/47379
return False
else:
return torch.jit.is_tracing()
def find_top_rpn_proposals(
proposals: List[torch.Tensor],
pred_objectness_logits: List[torch.Tensor],
image_sizes: List[Tuple[int, int]],
nms_thresh: float,
pre_nms_topk: int,
post_nms_topk: int,
min_box_size: float,
training: bool,
):
"""
For each feature map, select the `pre_nms_topk` highest scoring proposals,
apply NMS, clip proposals, and remove small boxes. Return the `post_nms_topk`
highest scoring proposals among all the feature maps for each image.
Args:
proposals (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A, 4).
All proposal predictions on the feature maps.
pred_objectness_logits (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A).
image_sizes (list[tuple]): sizes (h, w) for each image
nms_thresh (float): IoU threshold to use for NMS
pre_nms_topk (int): number of top k scoring proposals to keep before applying NMS.
When RPN is run on multiple feature maps (as in FPN) this number is per
feature map.
post_nms_topk (int): number of top k scoring proposals to keep after applying NMS.
When RPN is run on multiple feature maps (as in FPN) this number is total,
over all feature maps.
min_box_size (float): minimum proposal box side length in pixels (absolute units
wrt input images).
training (bool): True if proposals are to be used in training, otherwise False.
This arg exists only to support a legacy bug; look for the "NB: Legacy bug ..."
comment.
Returns:
list[Instances]: list of N Instances. The i-th Instances
stores post_nms_topk object proposals for image i, sorted by their
objectness score in descending order.
"""
num_images = len(image_sizes)
device = (
proposals[0].device
if torch.jit.is_scripting()
else ("cpu" if torch.jit.is_tracing() else proposals[0].device)
)
# 1. Select top-k anchor for every level and every image
topk_scores = [] # #lvl Tensor, each of shape N x topk
topk_proposals = []
level_ids = [] # #lvl Tensor, each of shape (topk,)
batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0])
for level_id, (proposals_i, logits_i) in enumerate(zip(proposals, pred_objectness_logits)):
Hi_Wi_A = logits_i.shape[1]
if isinstance(Hi_Wi_A, torch.Tensor): # it's a tensor in tracing
num_proposals_i = torch.clamp(Hi_Wi_A, max=pre_nms_topk)
else:
num_proposals_i = min(Hi_Wi_A, pre_nms_topk)
topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1)
# each is N x topk
topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4
topk_proposals.append(topk_proposals_i)
topk_scores.append(topk_scores_i)
level_ids.append(
move_device_like(
torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device),
proposals[0],
)
)
# 2. Concat all levels together
topk_scores = cat(topk_scores, dim=1)
topk_proposals = cat(topk_proposals, dim=1)
level_ids = cat(level_ids, dim=0)
# 3. For each image, run a per-level NMS, and choose topk results.
results: List[Instances] = []
for n, image_size in enumerate(image_sizes):
boxes = Boxes(topk_proposals[n])
scores_per_img = topk_scores[n]
lvl = level_ids
valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img)
if not valid_mask.all():
if training:
raise FloatingPointError(
"Predicted boxes or scores contain Inf/NaN. Training has diverged."
)
boxes = boxes[valid_mask]
scores_per_img = scores_per_img[valid_mask]
lvl = lvl[valid_mask]
boxes.clip(image_size)
# filter empty boxes
keep = boxes.nonempty(threshold=min_box_size)
if _is_tracing() or keep.sum().item() != len(boxes):
boxes, scores_per_img, lvl = boxes[keep], scores_per_img[keep], lvl[keep]
keep = batched_nms(boxes.tensor, scores_per_img, lvl, nms_thresh)
# In Detectron1, there was different behavior during training vs. testing.
# (https://github.com/facebookresearch/Detectron/issues/459)
# During training, topk is over the proposals from *all* images in the training batch.
# During testing, it is over the proposals for each image separately.
# As a result, the training behavior becomes batch-dependent,
# and the configuration "POST_NMS_TOPK_TRAIN" end up relying on the batch size.
# This bug is addressed in Detectron2 to make the behavior independent of batch size.
keep = keep[:post_nms_topk] # keep is already sorted
res = Instances(image_size)
res.proposal_boxes = boxes[keep]
res.objectness_logits = scores_per_img[keep]
results.append(res)
return results
def add_ground_truth_to_proposals(
gt: Union[List[Instances], List[Boxes]], proposals: List[Instances]
) -> List[Instances]:
"""
Call `add_ground_truth_to_proposals_single_image` for all images.
Args:
gt(Union[List[Instances], List[Boxes]): list of N elements. Element i is a Instances
representing the ground-truth for image i.
proposals (list[Instances]): list of N elements. Element i is a Instances
representing the proposals for image i.
Returns:
list[Instances]: list of N Instances. Each is the proposals for the image,
with field "proposal_boxes" and "objectness_logits".
"""
assert gt is not None
if len(proposals) != len(gt):
raise ValueError("proposals and gt should have the same length as the number of images!")
if len(proposals) == 0:
return proposals
return [
add_ground_truth_to_proposals_single_image(gt_i, proposals_i)
for gt_i, proposals_i in zip(gt, proposals)
]
def add_ground_truth_to_proposals_single_image(
gt: Union[Instances, Boxes], proposals: Instances
) -> Instances:
"""
Augment `proposals` with `gt`.
Args:
Same as `add_ground_truth_to_proposals`, but with gt and proposals
per image.
Returns:
Same as `add_ground_truth_to_proposals`, but for only one image.
"""
if isinstance(gt, Boxes):
# convert Boxes to Instances
gt = Instances(proposals.image_size, gt_boxes=gt)
gt_boxes = gt.gt_boxes
device = proposals.objectness_logits.device
# Assign all ground-truth boxes an objectness logit corresponding to
# P(object) = sigmoid(logit) =~ 1.
gt_logit_value = math.log((1.0 - 1e-10) / (1 - (1.0 - 1e-10)))
gt_logits = gt_logit_value * torch.ones(len(gt_boxes), device=device)
# Concatenating gt_boxes with proposals requires them to have the same fields
gt_proposal = Instances(proposals.image_size, **gt.get_fields())
gt_proposal.proposal_boxes = gt_boxes
gt_proposal.objectness_logits = gt_logits
for key in proposals.get_fields().keys():
assert gt_proposal.has(
key
), "The attribute '{}' in `proposals` does not exist in `gt`".format(key)
# NOTE: Instances.cat only use fields from the first item. Extra fields in latter items
# will be thrown away.
new_proposals = Instances.cat([proposals, gt_proposal])
return new_proposals