# Copyright (c) Facebook, Inc. and its affiliates. import math from typing import Any, List import torch from torch import nn from torch.nn import functional as F from detectron2.config import CfgNode from detectron2.structures import Instances from .. import DensePoseConfidenceModelConfig, DensePoseUVConfidenceType from .chart import DensePoseChartLoss from .registry import DENSEPOSE_LOSS_REGISTRY from .utils import BilinearInterpolationHelper, LossDict @DENSEPOSE_LOSS_REGISTRY.register() class DensePoseChartWithConfidenceLoss(DensePoseChartLoss): """ """ def __init__(self, cfg: CfgNode): super().__init__(cfg) self.confidence_model_cfg = DensePoseConfidenceModelConfig.from_cfg(cfg) if self.confidence_model_cfg.uv_confidence.type == DensePoseUVConfidenceType.IID_ISO: self.uv_loss_with_confidences = IIDIsotropicGaussianUVLoss( self.confidence_model_cfg.uv_confidence.epsilon ) elif self.confidence_model_cfg.uv_confidence.type == DensePoseUVConfidenceType.INDEP_ANISO: self.uv_loss_with_confidences = IndepAnisotropicGaussianUVLoss( self.confidence_model_cfg.uv_confidence.epsilon ) def produce_fake_densepose_losses_uv(self, densepose_predictor_outputs: Any) -> LossDict: """ Overrides fake losses for fine segmentation and U/V coordinates to include computation graphs for additional confidence parameters. These are used when no suitable ground truth data was found in a batch. The loss has a value 0 and is primarily used to construct the computation graph, so that `DistributedDataParallel` has similar graphs on all GPUs and can perform reduction properly. Args: densepose_predictor_outputs: DensePose predictor outputs, an object of a dataclass that is assumed to have the following attributes: * fine_segm - fine segmentation estimates, tensor of shape [N, C, S, S] * u - U coordinate estimates per fine labels, tensor of shape [N, C, S, S] * v - V coordinate estimates per fine labels, tensor of shape [N, C, S, S] Return: dict: str -> tensor: dict of losses with the following entries: * `loss_densepose_U`: has value 0 * `loss_densepose_V`: has value 0 * `loss_densepose_I`: has value 0 """ conf_type = self.confidence_model_cfg.uv_confidence.type if self.confidence_model_cfg.uv_confidence.enabled: loss_uv = ( densepose_predictor_outputs.u.sum() + densepose_predictor_outputs.v.sum() ) * 0 if conf_type == DensePoseUVConfidenceType.IID_ISO: loss_uv += densepose_predictor_outputs.sigma_2.sum() * 0 elif conf_type == DensePoseUVConfidenceType.INDEP_ANISO: loss_uv += ( densepose_predictor_outputs.sigma_2.sum() + densepose_predictor_outputs.kappa_u.sum() + densepose_predictor_outputs.kappa_v.sum() ) * 0 return {"loss_densepose_UV": loss_uv} else: return super().produce_fake_densepose_losses_uv(densepose_predictor_outputs) def produce_densepose_losses_uv( self, proposals_with_gt: List[Instances], densepose_predictor_outputs: Any, packed_annotations: Any, interpolator: BilinearInterpolationHelper, j_valid_fg: torch.Tensor, ) -> LossDict: conf_type = self.confidence_model_cfg.uv_confidence.type if self.confidence_model_cfg.uv_confidence.enabled: u_gt = packed_annotations.u_gt[j_valid_fg] u_est = interpolator.extract_at_points(densepose_predictor_outputs.u)[j_valid_fg] v_gt = packed_annotations.v_gt[j_valid_fg] v_est = interpolator.extract_at_points(densepose_predictor_outputs.v)[j_valid_fg] sigma_2_est = interpolator.extract_at_points(densepose_predictor_outputs.sigma_2)[ j_valid_fg ] if conf_type == DensePoseUVConfidenceType.IID_ISO: return { "loss_densepose_UV": ( self.uv_loss_with_confidences(u_est, v_est, sigma_2_est, u_gt, v_gt) * self.w_points ) } elif conf_type in [DensePoseUVConfidenceType.INDEP_ANISO]: kappa_u_est = interpolator.extract_at_points(densepose_predictor_outputs.kappa_u)[ j_valid_fg ] kappa_v_est = interpolator.extract_at_points(densepose_predictor_outputs.kappa_v)[ j_valid_fg ] return { "loss_densepose_UV": ( self.uv_loss_with_confidences( u_est, v_est, sigma_2_est, kappa_u_est, kappa_v_est, u_gt, v_gt ) * self.w_points ) } return super().produce_densepose_losses_uv( proposals_with_gt, densepose_predictor_outputs, packed_annotations, interpolator, j_valid_fg, ) class IIDIsotropicGaussianUVLoss(nn.Module): """ Loss for the case of iid residuals with isotropic covariance: $Sigma_i = sigma_i^2 I$ The loss (negative log likelihood) is then: $1/2 sum_{i=1}^n (log(2 pi) + 2 log sigma_i^2 + ||delta_i||^2 / sigma_i^2)$, where $delta_i=(u - u', v - v')$ is a 2D vector containing UV coordinates difference between estimated and ground truth UV values For details, see: N. Neverova, D. Novotny, A. Vedaldi "Correlated Uncertainty for Learning Dense Correspondences from Noisy Labels", p. 918--926, in Proc. NIPS 2019 """ def __init__(self, sigma_lower_bound: float): super(IIDIsotropicGaussianUVLoss, self).__init__() self.sigma_lower_bound = sigma_lower_bound self.log2pi = math.log(2 * math.pi) def forward( self, u: torch.Tensor, v: torch.Tensor, sigma_u: torch.Tensor, target_u: torch.Tensor, target_v: torch.Tensor, ): # compute $\sigma_i^2$ # use sigma_lower_bound to avoid degenerate solution for variance # (sigma -> 0) sigma2 = F.softplus(sigma_u) + self.sigma_lower_bound # compute \|delta_i\|^2 # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. delta_t_delta = (u - target_u) ** 2 + (v - target_v) ** 2 # the total loss from the formula above: loss = 0.5 * (self.log2pi + 2 * torch.log(sigma2) + delta_t_delta / sigma2) return loss.sum() class IndepAnisotropicGaussianUVLoss(nn.Module): """ Loss for the case of independent residuals with anisotropic covariances: $Sigma_i = sigma_i^2 I + r_i r_i^T$ The loss (negative log likelihood) is then: $1/2 sum_{i=1}^n (log(2 pi) + log sigma_i^2 (sigma_i^2 + ||r_i||^2) + ||delta_i||^2 / sigma_i^2 - <delta_i, r_i>^2 / (sigma_i^2 * (sigma_i^2 + ||r_i||^2)))$, where $delta_i=(u - u', v - v')$ is a 2D vector containing UV coordinates difference between estimated and ground truth UV values For details, see: N. Neverova, D. Novotny, A. Vedaldi "Correlated Uncertainty for Learning Dense Correspondences from Noisy Labels", p. 918--926, in Proc. NIPS 2019 """ def __init__(self, sigma_lower_bound: float): super(IndepAnisotropicGaussianUVLoss, self).__init__() self.sigma_lower_bound = sigma_lower_bound self.log2pi = math.log(2 * math.pi) def forward( self, u: torch.Tensor, v: torch.Tensor, sigma_u: torch.Tensor, kappa_u_est: torch.Tensor, kappa_v_est: torch.Tensor, target_u: torch.Tensor, target_v: torch.Tensor, ): # compute $\sigma_i^2$ sigma2 = F.softplus(sigma_u) + self.sigma_lower_bound # compute \|r_i\|^2 # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. r_sqnorm2 = kappa_u_est**2 + kappa_v_est**2 delta_u = u - target_u delta_v = v - target_v # compute \|delta_i\|^2 # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. delta_sqnorm = delta_u**2 + delta_v**2 delta_u_r_u = delta_u * kappa_u_est delta_v_r_v = delta_v * kappa_v_est # compute the scalar product <delta_i, r_i> delta_r = delta_u_r_u + delta_v_r_v # compute squared scalar product <delta_i, r_i>^2 # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. delta_r_sqnorm = delta_r**2 denom2 = sigma2 * (sigma2 + r_sqnorm2) loss = 0.5 * ( self.log2pi + torch.log(denom2) + delta_sqnorm / sigma2 - delta_r_sqnorm / denom2 ) return loss.sum()