File size: 10,394 Bytes
19a1abb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import os
import numpy as np
import torch
from einops import rearrange
from imageio import imwrite
from pydantic import validator
import imageio
import tempfile
import gradio as gr
from PIL import Image
from my.utils import (
tqdm, EventStorage, HeartBeat, EarlyLoopBreak,
get_event_storage, get_heartbeat, read_stats
)
from my.config import BaseConf, dispatch, optional_load_config
from my.utils.seed import seed_everything
from adapt import ScoreAdapter
from run_img_sampling import SD
from misc import torch_samps_to_imgs
from pose import PoseConfig
from run_nerf import VoxConfig
from voxnerf.utils import every
from voxnerf.render import (
as_torch_tsrs, rays_from_img, ray_box_intersect, render_ray_bundle
)
from voxnerf.vis import stitch_vis, bad_vis as nerf_vis
from pytorch3d.renderer import PointsRasterizationSettings
from semantic_coding import semantic_coding, semantic_karlo, semantic_sd
from pc_project import point_e, render_depth_from_cloud
device_glb = torch.device("cuda")
def tsr_stats(tsr):
return {
"mean": tsr.mean().item(),
"std": tsr.std().item(),
"max": tsr.max().item(),
}
class SJC_3DFuse(BaseConf):
family: str = "sd"
sd: SD = SD(
variant="v1",
prompt="a comfortable bed",
scale=100.0,
dir="./results",
alpha=0.3
)
lr: float = 0.05
n_steps: int = 10000
vox: VoxConfig = VoxConfig(
model_type="V_SD", grid_size=100, density_shift=-1.0, c=3,
blend_bg_texture=False , bg_texture_hw=4,
bbox_len=1.0
)
pose: PoseConfig = PoseConfig(rend_hw=64, FoV=60.0, R=1.5)
emptiness_scale: int = 10
emptiness_weight: int = 1e4
emptiness_step: float = 0.5
emptiness_multiplier: float = 20.0
depth_weight: int = 0
var_red: bool = True
exp_dir: str = "./results"
ti_step: int = 800
pt_step: int = 800
initial: str = ""
random_seed: int = 0
semantic_model: str = "Karlo"
bg_preprocess: bool = True
num_initial_image: int = 4
@validator("vox")
def check_vox(cls, vox_cfg, values):
family = values['family']
if family == "sd":
vox_cfg.c = 4
return vox_cfg
def run(self):
raise Exception("This version is for huggingface demo, which doesn't support CLI. Please visit https://github.com/KU-CVLAB/3DFuse")
def run_gradio(self, points, images):
cfgs = self.dict()
initial = cfgs.pop('initial')
exp_dir=os.path.join(cfgs.pop('exp_dir'),initial)
# Optimization and pivotal tuning for LoRA
yield gr.update(value=None), "Tuning for the LoRA layer is starting now. It will take approximately ~10 mins.", gr.update(value=None)
state=semantic_coding(images, cfgs,self.sd,initial)
self.sd.dir=state
# Load SD with Consistency Injection Module
family = cfgs.pop("family")
model = getattr(self, family).make()
print(model.prompt)
cfgs.pop("vox")
vox = self.vox.make()
cfgs.pop("pose")
poser = self.pose.make()
# Score distillation
yield from fuse_3d(**cfgs, poser=poser,model=model,vox=vox,exp_dir=exp_dir, points=points, is_gradio=True)
def fuse_3d(
poser, vox, model: ScoreAdapter,
lr, n_steps, emptiness_scale, emptiness_weight, emptiness_step, emptiness_multiplier,
depth_weight, var_red, exp_dir, points, is_gradio, **kwargs
):
del kwargs
if is_gradio:
yield gr.update(visible=True), "LoRA layers tuning has just finished. \nScore distillation has started.", gr.update(visible=True)
assert model.samps_centered()
_, target_H, target_W = model.data_shape()
bs = 1
aabb = vox.aabb.T.cpu().numpy()
vox = vox.to(device_glb)
opt = torch.optim.Adamax(vox.opt_params(), lr=lr)
H, W = poser.H, poser.W
Ks_, poses_, prompt_prefixes_, angles_list = poser.sample_train(n_steps,device_glb)
ts = model.us[30:-10]
fuse = EarlyLoopBreak(5)
raster_settings = PointsRasterizationSettings(
image_size= 800,
radius = 0.02,
points_per_pixel = 10
)
ts = model.us[30:-10]
calibration_value=0.0
with tqdm(total=n_steps) as pbar:
# HeartBeat(pbar) as hbeat, \
# EventStorage(output_dir=os.path.join(exp_dir,'3d')) as metric:
for i in range(len(poses_)):
if fuse.on_break():
break
depth_map = render_depth_from_cloud(points, angles_list[i], raster_settings, device_glb,calibration_value)
y, depth, ws = render_one_view(vox, aabb, H, W, Ks_[i], poses_[i], return_w=True)
p = f"{prompt_prefixes_[i]} {model.prompt}"
score_conds = model.prompts_emb([p])
score_conds['c']=score_conds['c'].repeat(bs,1,1)
score_conds['uc']=score_conds['uc'].repeat(bs,1,1)
opt.zero_grad()
with torch.no_grad():
chosen_σs = np.random.choice(ts, bs, replace=False)
chosen_σs = chosen_σs.reshape(-1, 1, 1, 1)
chosen_σs = torch.as_tensor(chosen_σs, device=model.device, dtype=torch.float32)
noise = torch.randn(bs, *y.shape[1:], device=model.device)
zs = y + chosen_σs * noise
Ds = model.denoise(zs, chosen_σs,depth_map.unsqueeze(dim=0),**score_conds)
if var_red:
grad = (Ds - y) / chosen_σs
else:
grad = (Ds - zs) / chosen_σs
grad = grad.mean(0, keepdim=True)
y.backward(-grad, retain_graph=True)
if depth_weight > 0:
center_depth = depth[7:-7, 7:-7]
border_depth_mean = (depth.sum() - center_depth.sum()) / (64*64-50*50)
center_depth_mean = center_depth.mean()
depth_diff = center_depth_mean - border_depth_mean
depth_loss = - torch.log(depth_diff + 1e-12)
depth_loss = depth_weight * depth_loss
depth_loss.backward(retain_graph=True)
emptiness_loss = torch.log(1 + emptiness_scale * ws).mean()
emptiness_loss = emptiness_weight * emptiness_loss
if emptiness_step * n_steps <= i:
emptiness_loss *= emptiness_multiplier
emptiness_loss.backward()
opt.step()
# metric.put_scalars(**tsr_stats(y))
if every(pbar, percent=2):
with torch.no_grad():
y = model.decode(y)
# vis_routine(metric, y, depth,p,depth_map[0])
if is_gradio :
yield torch_samps_to_imgs(y)[0], f"Progress: {pbar.n}/{pbar.total} \nAfter the generation is complete, the video results will be displayed below.", gr.update(value=None)
# metric.step()
pbar.update()
pbar.set_description(p)
# hbeat.beat()
# metric.put_artifact(
# "ckpt", ".pt","", lambda fn: torch.save(vox.state_dict(), fn)
# )
# with EventStorage("result"):
out=evaluate(model, vox, poser)
if is_gradio:
yield gr.update(visible=False), f"Generation complete. Please check the video below.", gr.update(value=out)
else :
yield None
# metric.step()
# hbeat.done()
@torch.no_grad()
def evaluate(score_model, vox, poser):
H, W = poser.H, poser.W
vox.eval()
K, poses = poser.sample_test(100)
fuse = EarlyLoopBreak(5)
# metric = get_event_storage()
# hbeat = get_heartbeat()
aabb = vox.aabb.T.cpu().numpy()
vox = vox.to(device_glb)
num_imgs = len(poses)
frames=[]
for i in (pbar := tqdm(range(num_imgs))):
if fuse.on_break():
break
pose = poses[i]
y, depth = render_one_view(vox, aabb, H, W, K, pose)
y = score_model.decode(y)
# vis_routine(metric, y, depth,"",None)
y=torch_samps_to_imgs(y)[0]
frames.append(y)
# metric.step()
# hbeat.beat()
# metric.flush_history()
# metric.put_artifact(
# "video", ".mp4","",
# lambda fn: stitch_vis(fn, read_stats(metric.output_dir, "img")[1])
# )
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
writer = imageio.get_writer(out_file.name, fps=10)
for img in frames:
writer.append_data(img)
writer.close()
# metric.step()
return out_file.name
def render_one_view(vox, aabb, H, W, K, pose, return_w=False):
N = H * W
ro, rd = rays_from_img(H, W, K, pose)
ro, rd, t_min, t_max = scene_box_filter_(ro, rd, aabb)
assert len(ro) == N, "for now all pixels must be in"
ro, rd, t_min, t_max = as_torch_tsrs(vox.device, ro, rd, t_min, t_max)
rgbs, depth, weights = render_ray_bundle(vox, ro, rd, t_min, t_max)
rgbs = rearrange(rgbs, "(h w) c -> 1 c h w", h=H, w=W)
depth = rearrange(depth, "(h w) 1 -> h w", h=H, w=W)
if return_w:
return rgbs, depth, weights
else:
return rgbs, depth
def scene_box_filter_(ro, rd, aabb):
_, t_min, t_max = ray_box_intersect(ro, rd, aabb)
# do not render what's behind the ray origin
t_min, t_max = np.maximum(t_min, 0), np.maximum(t_max, 0)
return ro, rd, t_min, t_max
def vis_routine(metric, y, depth,prompt,depth_map):
pane = nerf_vis(y, depth, final_H=256)
im = torch_samps_to_imgs(y)[0]
depth = depth.cpu().numpy()
metric.put_artifact("view", ".png","",lambda fn: imwrite(fn, pane))
metric.put_artifact("img", ".png",prompt, lambda fn: imwrite(fn, im))
if depth_map != None:
metric.put_artifact("PC_depth", ".png",prompt, lambda fn: imwrite(fn, depth_map.cpu().squeeze()))
metric.put_artifact("depth", ".npy","",lambda fn: np.save(fn, depth))
if __name__ == "__main__":
dispatch(SJC_3DFuse) |