import gradio as gr import numpy as np from PIL import Image import requests import hopsworks import joblib project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("titanic_modal", version=1) model_dir = model.download() model = joblib.load(model_dir + "/titanic_model.pkl") def titanic(pclass, sex, age, sibsp, parch, fare, embarked): input_list = [] if sex == 'female': input_list.append(1.0) input_list.append(0.0) elif sex == 'male': input_list.append(0.0) input_list.append(1.0) else: print("ERROR!") exit() if embarked == "C": input_list.append(1.0) input_list.append(0.0) input_list.append(0.0) elif embarked == "Q": input_list.append(0.0) input_list.append(1.0) input_list.append(0.0) elif embarked == "S": input_list.append(0.0) input_list.append(0.0) input_list.append(1.0) else: print("ERROR!") exit() if age < 18: input_list.append(1.0) elif age < 55: input_list.append(2.0) else: input_list.append(3.0) input_list.append(sibsp) input_list.append(parch) input_list.append(fare) input_list.append(pclass) # 'res' is a list of predictions returned as the label. res = model.predict(np.asarray(input_list).reshape(1, -1)) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. if res[0] == 1.0: survive_url = "https://raw.githubusercontent.com/Hope-Liang/ID2223Lab1/main/serverless-ml-titanic/images/survived.png" else: survive_url = "https://raw.githubusercontent.com/Hope-Liang/ID2223Lab1/main/serverless-ml-titanic/images/died.png" img = Image.open(requests.get(survive_url, stream=True).raw) return img demo = gr.Interface( fn=titanic, title="Titanic Survival Predictive Analytics", description="Experiment with titanic passenger features to predict whether survived or not.", allow_flagging="never", inputs=[ gr.inputs.Number(default=1, label="Pclass (1,2,3)"), gr.inputs.Textbox(default="female", label="Sex (female/male)"), gr.inputs.Number(default=30.0, label="age (years)"), gr.inputs.Number(default=1.0, label="SibSp"), gr.inputs.Number(default=1.0, label="Parch"), gr.inputs.Number(default=10.0, label="Fare (GBP)"), gr.inputs.Textbox(default="S", label="Embarked (S,C,Q)") ], outputs=gr.Image(type="pil")) demo.launch()