Spaces:
Sleeping
Sleeping
File size: 1,910 Bytes
e81879a 3559626 05c62eb e81879a 3559626 4f950cb 05c62eb 3559626 05c62eb 4ddb435 05c62eb 4ddb435 05c62eb 4ddb435 3559626 4ddb435 05c62eb 3559626 05c62eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
import tensorflow as tf
import numpy as np
import os
model = tf.keras.models.load_model('model_cv.h5')
def detect(img):
img = img.reshape(1, 100, 100, 3)
prediction = np.around(model.predict(img)[0], decimals=0)[0]
if prediction == 1:
return "Pneumonia Detected!"
return "Pneumonia Not Detected!"
input = gr.inputs.Image(shape=(100, 100))
examples = ['examples/n1.jpeg', 'examples/n2.jpeg', 'examples/n3.jpeg', 'examples/n4.jpeg', 'examples/n5.jpeg',
'examples/n6.jpeg', 'examples/n7.jpeg', 'examples/n8.jpeg', 'examples/p6.jpeg', 'examples/p7.jpeg',
'examples/p1.jpeg', 'examples/p2.jpeg', 'examples/p3.jpeg', 'examples/p4.jpeg', 'examples/p8.jpeg']
title = "PneumoDetect: Pneumonia Detection from Chest X-Rays"
iface = gr.Interface(fn=detect, inputs=input, outputs="text", examples=examples, examples_per_page=20, title=title)
iface.launch(inline=False)
# model_name = "Horus7/kaduce" # Remplacez par le nom de votre modèle Hugging Face
# # tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForSequenceClassification.from_pretrained(model_name)
# def predict(image):
# # Prétraiter l'image (vous pouvez adapter cela en fonction des besoins de votre modèle)
# preprocessed_image = preprocess_image(image)
# # Faire une prédiction avec le modèle
# prediction = model.predict(preprocessed_image)
# # Renvoyer la prédiction
# return prediction
# # Fonction pour prétraiter l'image avant la prédiction
# def preprocess_image(image):
# # Effectuer les étapes de prétraitement nécessaires pour votre modèle (redimensionnement, normalisation, etc.)
# return image
# # Interface Gradio
# inputs = gr.inputs.Image() # Entrée : une image
# outputs = gr.outputs.Label() # Sortie : une étiquette
# gr.Interface(fn=predict, inputs=inputs, outputs=outputs).launch()
|