Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
import os | |
import tensorflow as tf | |
import numpy as np | |
from keras.models import load_model | |
from tensorflow.keras.utils import load_img | |
# Charger le modèle | |
model = load_model('model_multi.h5') | |
def detect(img): | |
prediction = model.predict(img)[0] | |
print(prediction) | |
def format_decimal(value): | |
decimal_value = format(value, ".2f") | |
return decimal_value | |
if format_decimal(prediction[0]) >= "0.5": | |
return "Bactérie détectée" | |
if format_decimal(prediction[1]) >= "0.5": | |
return "Poumon sain" | |
if format_decimal(prediction[2]) >= "0.5": | |
return "Virus détecté" | |
# result = detect(img) | |
# print(result) | |
os.system("tar -zxvf examples.tar.gz") | |
input = gr.inputs.Image(shape=(100, 100),image_mode="RGB") | |
examples = ['examples/n1.jpeg', 'examples/n2.jpeg', 'examples/n3.jpeg', 'examples/n4.jpeg', 'examples/n5.jpeg', | |
'examples/n6.jpeg', 'examples/n7.jpeg', 'examples/n8.jpeg', 'examples/p6.jpeg', 'examples/p7.jpeg', | |
'examples/p1.jpeg', 'examples/p2.jpeg', 'examples/p3.jpeg', 'examples/p4.jpeg', 'examples/p8.jpeg'] | |
title = "PneumoDetect: Pneumonia Detection from Chest X-Rays" | |
iface = gr.Interface(fn=detect, inputs=input, outputs="text", examples=examples, examples_per_page=20, title=title) | |
iface.launch(inline=False) | |