Horus7 commited on
Commit
dc4e72f
1 Parent(s): 6d69209

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -7
app.py CHANGED
@@ -2,21 +2,35 @@ import gradio as gr
2
  import tensorflow as tf
3
  import numpy as np
4
  import os
 
 
 
 
5
 
6
- os.system("tar -zxvf examples.tar.gz")
 
7
 
8
- model = tf.keras.models.load_model('model_cv.h5')
 
 
 
 
 
9
 
10
  def detect(img):
11
- img = img.reshape(1, 100, 100, 3)
12
- prediction = np.around(model.predict(img)[0], decimals=0)[0]
13
-
14
- if prediction == 1:
15
- return "Pneumonia Detected!"
16
 
17
  return "Pneumonia Not Detected!"
18
 
19
 
 
 
 
 
 
20
  input = gr.inputs.Image(shape=(100, 100))
21
 
22
  examples = ['examples/n1.jpeg', 'examples/n2.jpeg', 'examples/n3.jpeg', 'examples/n4.jpeg', 'examples/n5.jpeg',
 
2
  import tensorflow as tf
3
  import numpy as np
4
  import os
5
+ import tensorflow as tf
6
+ import numpy as np
7
+ from keras.models import load_model
8
+ from tensorflow.keras.utils import load_img
9
 
10
+ # Charger le modèle
11
+ model = load_model('/content/drive/MyDrive/T-DEV-810/model_cv.h5')
12
 
13
+ # Charger l'image
14
+ img = load_img('/content/drive/MyDrive/T-DEV-810/DS/test/NORMAL/IM-0063-0001.jpeg', target_size=(100, 100))
15
+ # Prétraiter l'image
16
+ # img = image.img_to_array(img)
17
+ img = np.expand_dims(img, axis=0)
18
+ img = img/255
19
 
20
  def detect(img):
21
+ prediction = model.predict(img)[0]
22
+ print(prediction)
23
+ if prediction[0] <= 0.80:
24
+ return "Pneumonia Detected!"
 
25
 
26
  return "Pneumonia Not Detected!"
27
 
28
 
29
+ result = detect(img)
30
+ print(result)
31
+ os.system("tar -zxvf examples.tar.gz")
32
+
33
+
34
  input = gr.inputs.Image(shape=(100, 100))
35
 
36
  examples = ['examples/n1.jpeg', 'examples/n2.jpeg', 'examples/n3.jpeg', 'examples/n4.jpeg', 'examples/n5.jpeg',