import gradio as gr import tensorflow as tf import numpy as np import os import tensorflow as tf import numpy as np from keras.models import load_model from tensorflow.keras.utils import load_img # Charger le modèle model = load_model('model_cv.h5') def detect(img): img = np.expand_dims(img, axis=0) img = img/255 prediction = model.predict(img)[0] if prediction[0] <= 0.80: return "Pneumonia Detected!" return "Pneumonia Not Detected!" # result = detect(img) # print(result) os.system("tar -zxvf examples.tar.gz") input = gr.inputs.Image(shape=(100,100)) title = "PneumoDetect: Pneumonia Detection from Chest X-Rays" iface = gr.Interface(fn=detect, inputs=input, outputs="text", examples_per_page=20, title=title) iface.launch(inline=False)