Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,23 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
-
import os
|
5 |
-
import tensorflow as tf
|
6 |
-
import numpy as np
|
7 |
from keras.models import load_model
|
8 |
-
from tensorflow.keras.utils import load_img
|
9 |
|
10 |
# Charger le modèle
|
11 |
-
|
12 |
model = load_model('best_model.h5')
|
13 |
|
14 |
-
|
15 |
def format_decimal(value):
|
16 |
decimal_value = format(value, ".2f")
|
17 |
return decimal_value
|
18 |
-
|
19 |
def detect(img):
|
|
|
|
|
|
|
20 |
img = np.expand_dims(img, axis=0)
|
21 |
-
img = img/255
|
|
|
22 |
# Faire une prédiction
|
23 |
prediction = model.predict(img)[0]
|
24 |
|
@@ -39,22 +38,11 @@ def detect(img):
|
|
39 |
|
40 |
return texte
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
# result = detect(img)
|
45 |
-
# print(result)
|
46 |
-
# os.system("tar -zxvf examples.tar.gz")
|
47 |
-
# examples = ['examples/n1.jpeg', 'examples/n2.jpeg', 'examples/n3.jpeg', 'examples/n4.jpeg', 'examples/n5.jpeg',
|
48 |
-
# 'examples/n6.jpeg', 'examples/n7.jpeg', 'examples/n8.jpeg', 'examples/p6.jpeg', 'examples/p7.jpeg',]
|
49 |
-
|
50 |
-
input = gr.inputs.Image(shape=(100,100))
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
title = "Orisha"
|
55 |
|
56 |
-
iface = gr.Interface(fn=detect,
|
57 |
-
|
58 |
-
|
59 |
title=title)
|
60 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
|
|
|
|
|
|
4 |
from keras.models import load_model
|
5 |
+
from tensorflow.keras.utils import load_img, img_to_array
|
6 |
|
7 |
# Charger le modèle
|
|
|
8 |
model = load_model('best_model.h5')
|
9 |
|
|
|
10 |
def format_decimal(value):
|
11 |
decimal_value = format(value, ".2f")
|
12 |
return decimal_value
|
13 |
+
|
14 |
def detect(img):
|
15 |
+
# Prétraiter l'image
|
16 |
+
img = img.resize((256, 256)) # Redimensionner l'image
|
17 |
+
img = img_to_array(img)
|
18 |
img = np.expand_dims(img, axis=0)
|
19 |
+
img = img / 255.0 # Normaliser les valeurs de l'image
|
20 |
+
|
21 |
# Faire une prédiction
|
22 |
prediction = model.predict(img)[0]
|
23 |
|
|
|
38 |
|
39 |
return texte
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
title = "Orisha"
|
42 |
|
43 |
+
iface = gr.Interface(fn=detect,
|
44 |
+
inputs=gr.Image(type="pil", shape=(256, 256)),
|
45 |
+
outputs=gr.Textbox(label="Classe", lines=10),
|
46 |
title=title)
|
47 |
+
|
48 |
+
iface.launch(inline=False)
|