Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline | |
import torch | |
from src.linfusion import LinFusion | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
all_model_id = { | |
"DreamShaper-8": "Lykon/dreamshaper-8", | |
"RealisticVision-v4.0": "SG161222/Realistic_Vision_V4.0_noVAE", | |
"SD-v1.4": "CompVis/stable-diffusion-v1-4" | |
} | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 16384 | |
pipes = {} | |
for model_id, repo_id in all_model_id.items(): | |
pipes[model_id + '_t2i'] = StableDiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype) | |
LinFusion.construct_for(pipes[model_id + '_t2i']) | |
pipes[model_id + '_ip_adapter'] = StableDiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype) | |
pipes[model_id + '_ip_adapter'].load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin") | |
LinFusion.construct_for(pipes[model_id + '_ip_adapter']) | |
pipes[model_id + '_i2i'] = StableDiffusionImg2ImgPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype) | |
LinFusion.construct_for(pipes[model_id + '_i2i']) | |
def infer_t2i(model, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
pipe = pipes[model + '_t2i'].to(device) | |
image = pipe( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
width = width, | |
height = height, | |
generator = generator | |
).images[0] | |
return image, seed | |
def infer_i2i(model, prompt, image, strength, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
pipe = pipes[model + '_i2i'].to(device) | |
image = pipe( | |
prompt = prompt, | |
image = image.resize((width, height)), | |
strength = strength, | |
negative_prompt = negative_prompt, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
width = width, | |
height = height, | |
generator = generator | |
).images[0] | |
return image, seed | |
def infer_ip_adapter(model, prompt, image, scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
pipe = pipes[model + '_ip_adapter'].to(device) | |
pipe.set_ip_adapter_scale(scale) | |
image = pipe( | |
prompt = prompt, | |
image = image.resize((width, height)), | |
negative_prompt = negative_prompt, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
ip_adapter_image = image, | |
width = width, | |
height = height, | |
generator = generator | |
).images[0] | |
return image, seed | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Tab("Text-to-Image"): | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# LinFusion Text-to-Image Gradio Demo | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
model_choice = gr.Dropdown(label="Choose Model", choices=list(all_model_id.keys()), value=list(all_model_id.keys())[0]) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, #Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, #Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.5, #Replace with defaults that work for your model | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=25, #Replace with defaults that work for your model | |
) | |
gr.Examples( | |
examples = examples, | |
inputs = [prompt] | |
) | |
run_button.click( | |
fn=infer_t2i, | |
inputs = [model_choice, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result, seed] | |
) | |
with gr.Tab("Image-to-Image"): | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# LinFusion Image-to-Image Gradio Demo | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
image_upload_input = gr.Image(label="Upload an Image", type="pil") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
model_choice = gr.Dropdown(label="Choose Model", choices=list(all_model_id.keys()), value=list(all_model_id.keys())[0]) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, #Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, #Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.5, #Replace with defaults that work for your model | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=25, #Replace with defaults that work for your model | |
) | |
editing_strength = gr.Slider( | |
label="Strength of editing", | |
minimum=0, | |
maximum=1, | |
step=0.01, | |
value=0.5, #Replace with defaults that work for your model | |
) | |
gr.Examples( | |
examples = examples, | |
inputs = [prompt] | |
) | |
run_button.click( | |
fn=infer_i2i, | |
inputs = [model_choice, prompt, image_upload_input, editing_strength, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result, seed] | |
) | |
with gr.Tab("IP-Adapter"): | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# LinFusion IP-Adapter Gradio Demo | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
image_upload_input = gr.Image(label="Upload an Image", type="pil") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
model_choice = gr.Dropdown(label="Choose Model", choices=list(all_model_id.keys()), value=list(all_model_id.keys())[0]) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, #Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, #Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.5, #Replace with defaults that work for your model | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=25, #Replace with defaults that work for your model | |
) | |
ip_adapter_scale = gr.Slider( | |
label="Strength of image condition", | |
minimum=0, | |
maximum=1, | |
step=0.01, | |
value=0.4, #Replace with defaults that work for your model | |
) | |
gr.Examples( | |
examples = examples, | |
inputs = [prompt] | |
) | |
run_button.click( | |
fn=infer_ip_adapter, | |
inputs = [model_choice, prompt, image_upload_input, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result, seed] | |
) | |
demo.queue().launch() |