Huertas97's picture
Fix: full denoising teimsteps
b1d7f45
import gradio as gr
import json
import torch
from torch import nn
from diffusers import UNet2DModel, DDPMScheduler
import safetensors
from huggingface_hub import hf_hub_download
### GPU SETUP
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
## LOAD THE UNET MODEL AND DDPM SCHEDULER FROM HUGGINGFACE HUB
class ClassConditionedUnet(nn.Module):
def __init__(self, num_classes=10, class_emb_size=10):
super().__init__()
# The embedding layer will map the class label to a vector of size class_emb_size
self.class_emb = nn.Embedding(num_classes, class_emb_size)
# Self.model is an unconditional UNet with extra input channels
# to accept the conditioning information (the class embedding)
self.model = UNet2DModel(
sample_size=28, # output image resolution. Equal to input resolution
in_channels=1 + class_emb_size, # Additional input channels for class cond
out_channels=1, # the number of output channels. Equal to input
layers_per_block=3, # three residual connections (ResNet) per block
block_out_channels=(128, 256, 512), # N of output channels for each block. Inverse for upsampling
down_block_types=(
"DownBlock2D", # a regular ResNet downsampling block
"AttnDownBlock2D",
"AttnDownBlock2D", # a ResNet downsampling block with spatial self-attention
),
up_block_types=(
"AttnUpBlock2D", # a ResNet upsampling block with spatial self-attention
"AttnUpBlock2D",
"UpBlock2D", # a regular ResNet upsampling block
),
dropout = 0.1, # Dropout prob between Conv1 and Conv2 in a block. From Improved DDPM paper
)
# Forward method takes the class labels as an additional argument
def forward(self, x, t, class_labels):
bs, ch, w, h = x.shape # x is shape (bs, 1, 28, 28)
# class conditioning embedding to add as additional input channels
class_cond = self.class_emb(class_labels) # Map to embedding dimension
class_cond = class_cond.view(bs, class_cond.shape[1], 1, 1).expand(bs, class_cond.shape[1], w, h)
# class_cond final shape (bs, 4, 28, 28)
# Model input is now x and class cond concatenated together along dimension 1
# We need provide additional information (the class label)
# to every spatial location (pixel) in the image. Not changing the original
# pixels of the images, but adding new channels.
net_input = torch.cat((x, class_cond), 1) # (bs, 5, 28, 28)
# Feed this to the UNet alongside the timestep and return the prediction
# with image output size
return self.model(net_input, t).sample # (bs, 1, 28, 28)
# Define paths to download the model and scheduler
repo_name = "Huertas97/conditioned-unet-fashion-mnist-non-ema"
### UNET MODEL
# Download the safetensors model file
model_file_path = hf_hub_download(repo_id=repo_name, filename="fashion_class_cond_unet_model_best.safetensors")
# Load the Class Conditioned UNet model state dictionary
state_dict = safetensors.torch.load_file(model_file_path)
model_classcond_native = ClassConditionedUnet()
model_classcond_native.load_state_dict(state_dict)
model_classcond_native.to(device)
### DDPM SCHEDULER
# Download and load the scheduler configuration file
scheduler_file_path = hf_hub_download(repo_id=repo_name, filename="scheduler_config.json")
with open(scheduler_file_path, 'r') as f:
scheduler_config = json.load(f)
noise_scheduler = DDPMScheduler.from_config(scheduler_config)
# Define the classes
class_labels = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
def generate_images(selected_class, num_images, progress=gr.Progress()):
"""
Generate images using the trained model.
Parameters:
- selected_class: The class label as a string.
- num_images: Number of images to generate.
Returns:
- A list of generated images.
"""
# Convert class label to corresponding index
class_idx = class_labels.index(selected_class)
# Prepare random x to start from
x = torch.randn(num_images, 1, 28, 28).to(device)
y = torch.tensor([class_idx] * num_images).to(device)
for t in progress.tqdm(noise_scheduler.timesteps, desc="Generating image", total=noise_scheduler.config.num_train_timesteps): #
with torch.no_grad():
residual = model_classcond_native(x, t, y)
x = noise_scheduler.step(residual, t, x).prev_sample
# Post-process the generated images
# Clamp the values to [0, 1] and convert to [0, 255] uint8
# Also move the tensor to CPU and convert to numpy for plotting
x = (x.clamp(-1, 1) + 1) / 2
x = (x * 255).type(torch.uint8).cpu()
# Convert to list of images
images = [img.squeeze(0).numpy() for img in x]
return images
# Create the Gradio interface
demo = gr.Interface(
fn=generate_images,
inputs=[
gr.Dropdown(class_labels, label="Select Class", value="T-shirt/top"),
gr.Slider(minimum=1, maximum=8, step=1, value=1, label="Number of Images")
],
outputs=gr.Gallery(type="numpy", label="Generated Images"),
live=False,
description="Generate images using a class-conditioned UNet model."
)
demo.launch(share=True)