File size: 6,965 Bytes
75448af 638184c 75448af 638184c 75448af 638184c 75448af 638184c 75448af 638184c 75448af 638184c 75448af 638184c 75448af 638184c 75448af 638184c 75448af 638184c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
from datetime import datetime
import tempfile
from typing import Callable
import gradio as gr
from functools import partial
import re
import json
from src.logic.data_fetching import fetch_datasets, fetch_graph_data, fetch_groups, fetch_metrics, update_datasets_with_regex, update_datasets_with_regex
from src.logic.data_processing import export_data
from src.logic.graph_settings import update_graph_options
from src.logic.plotting import plot_data
def create_metric_view_tab(METRICS_LOCATION_DEFAULT: str, available_datasets: gr.State):
metric_data = gr.State([])
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
with gr.Column(scale=1):
base_folder = gr.Textbox(
label="Metrics Location",
value=METRICS_LOCATION_DEFAULT,
)
datasets_fetch = gr.Button("Fetch Datasets")
with gr.Column(scale=1):
regex_select = gr.Text(label="Regex filter", value=".*")
regex_button = gr.Button("Search")
with gr.Row():
selected_datasets_dropdown = gr.Dropdown(
choices=[],
label="Datasets",
multiselect=True,
interactive=True,
)
with gr.Column(scale=1):
grouping_dropdown = gr.Dropdown(
choices=[],
label="Grouping",
multiselect=False,
)
metric_name_dropdown = gr.Dropdown(
choices=[],
label="Metric name",
multiselect=False,
)
render_button = gr.Button("Render Metric", variant="primary")
with gr.Tabs():
with gr.TabItem("Graph Settings"):
log_scale_x_checkbox = gr.Checkbox(
label="Log scale x",
value=False,
)
log_scale_y_checkbox = gr.Checkbox(
label="Log scale y",
value=False,
)
rounding = gr.Number(
label="Rounding",
value=2,
)
with gr.TabItem("Grouping Settings") as group_settings:
with gr.Row() as group_choices:
with gr.Column(scale=2):
group_regex = gr.Text(
label="Group Regex",
value=None,
)
with gr.Row():
top_select = gr.Number(
label="N Groups",
value=100,
interactive=True,
)
direction_checkbox = gr.Radio(
label="Partition",
choices=[
"Top",
"Bottom",
"Most frequent (n_docs)",
],
value="Most frequent (n_docs)",
)
with gr.TabItem("Histogram Settings") as histogram_settings:
normalization_checkbox = gr.Checkbox(
label="Normalize",
value=True,
visible=False
)
cdf_checkbox = gr.Checkbox(
label="CDF",
value=False,
)
perc_checkbox = gr.Checkbox(
label="%",
value=False,
)
with gr.TabItem("Summary Settings") as summary_settings:
show_stds_checkbox = gr.Checkbox(
label="Show standard deviations",
value=False,
)
with gr.Row():
graph_output = gr.Plot(label="Graph")
with gr.Row(visible=False) as min_max_hist:
with gr.Column(scale=3):
min_max_hist_data = gr.Markdown()
with gr.Column(scale=1):
export_data_button = gr.Button("Export Data")
export_data_json = gr.File(visible=False)
def update_selected_datasets_dropdown(available_datasets, selected_datasets_dropdown):
selected_datasets = selected_datasets_dropdown or []
selected_datasets = set(selected_datasets) & set(available_datasets)
return gr.Dropdown(choices=available_datasets, value=sorted(list(selected_datasets)))
datasets_fetch.click(
fn=fetch_datasets,
inputs=[base_folder],
outputs=[available_datasets, selected_datasets_dropdown],
)
available_datasets.change(
fn=update_selected_datasets_dropdown,
inputs=[available_datasets, selected_datasets_dropdown],
outputs=selected_datasets_dropdown,
)
regex_button.click(
fn=update_datasets_with_regex,
inputs=[regex_select, selected_datasets_dropdown, available_datasets],
outputs=selected_datasets_dropdown,
)
selected_datasets_dropdown.change(
fn=fetch_groups,
inputs=[base_folder, selected_datasets_dropdown, grouping_dropdown],
outputs=grouping_dropdown,
)
grouping_dropdown.change(
fn=fetch_metrics,
inputs=[base_folder, selected_datasets_dropdown, grouping_dropdown, metric_name_dropdown],
outputs=metric_name_dropdown,
)
render_button.click(
fn=fetch_graph_data,
inputs=[
base_folder,
selected_datasets_dropdown,
metric_name_dropdown,
grouping_dropdown,
],
# We also output the graph_output = None to show the progress
outputs=[metric_data, graph_output],
)
grouping_dropdown.change(
fn=update_graph_options,
inputs=[grouping_dropdown],
outputs=[group_settings, histogram_settings, summary_settings],
)
gr.on(
triggers=[normalization_checkbox.input, rounding.input, group_regex.input, direction_checkbox.input,
top_select.input, log_scale_x_checkbox.input,
log_scale_y_checkbox.input, cdf_checkbox.input, perc_checkbox.input, show_stds_checkbox.input, metric_data.change],
fn=plot_data,
inputs=[
metric_data,
metric_name_dropdown,
normalization_checkbox,
rounding,
grouping_dropdown,
top_select,
direction_checkbox,
group_regex,
log_scale_x_checkbox,
log_scale_y_checkbox,
cdf_checkbox,
perc_checkbox,
show_stds_checkbox
],
outputs=[graph_output, min_max_hist, min_max_hist_data],
)
export_data_button.click(
fn=export_data,
inputs=[metric_data, metric_name_dropdown, grouping_dropdown],
outputs=[export_data_json],
)
return base_folder, selected_datasets_dropdown |