Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_client import Client, handle_file | |
from huggingface_hub import HfApi | |
import time | |
api = HfApi() | |
repo_ids = ["HuggingFaceH4/idefics2-8b-playground", "HuggingFaceH4/idefics2-8b-vdpoed-playground"] | |
for repo_id in repo_ids: | |
if api.space_info(repo_id).runtime.stage not in ["RUNNING", "APP_STARTING", "RUNNING_APP_STARTING"]: | |
api.restart_space(repo_id="HuggingFaceH4/idefics2-8b-playground") | |
for repo_id in repo_ids: | |
while api.space_info(repo_id).runtime.stage != "RUNNING": | |
time.sleep(1) | |
client_idefics2 = Client("HuggingFaceH4/idefics2-8b-playground") | |
client_idefics2_dpoed = Client("HuggingFaceH4/idefics2-8b-vdpoed-playground") | |
def respond(multimodal_input): | |
x = {"text": multimodal_input["text"], "files": [handle_file(file) for file in multimodal_input["files"]]} | |
text_1 = client_idefics2.predict(x, api_name="/predict") | |
text_2 = client_idefics2_dpoed.predict(x, api_name="/predict") | |
return text_1, text_2 | |
gr.Interface( | |
respond, | |
title="Compare IDEFICS2-8B Against DPO", | |
description="Compare IDEFICS2-8B against DPO fine-tuned IDEFICS2-8B in this demo. Learn more about vision language model DPO in this [blog](https://huggingface.co/blog/dpo_vlm).", | |
inputs=[gr.MultimodalTextbox(file_types=["image"], show_label=False)], | |
outputs=[gr.Textbox(label="idefics2-8b"), gr.Textbox(label="idefics2-8b-dpoed")], | |
examples=[{"text": "What is the type of flower in the image and what insect is on it?", "files": ["./bee.jpg"]}, | |
{"text": "Describe the image", "files": ["./howl.jpg"]}], | |
cache_examples=False, | |
).launch() | |