File size: 20,957 Bytes
217780a
58777cc
217780a
 
 
 
 
 
58777cc
217780a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58777cc
 
 
 
 
217780a
58777cc
217780a
58777cc
217780a
 
 
 
58777cc
217780a
 
58777cc
217780a
 
 
 
 
 
 
 
 
58777cc
 
217780a
58777cc
217780a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58777cc
 
 
 
 
 
217780a
 
 
7036801
217780a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58777cc
217780a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58777cc
 
 
217780a
58777cc
217780a
 
 
 
 
 
 
 
 
58777cc
 
 
 
 
 
 
 
217780a
58777cc
217780a
4c85382
217780a
 
 
 
 
 
 
 
 
 
58777cc
 
217780a
 
58777cc
 
 
 
 
 
 
 
 
 
217780a
 
58777cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217780a
 
 
 
 
 
 
 
 
58777cc
 
 
 
 
 
 
 
 
 
 
 
217780a
 
58777cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217780a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58777cc
 
217780a
 
 
 
 
 
 
 
 
 
58777cc
217780a
 
 
 
 
 
58777cc
 
217780a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58777cc
217780a
 
 
 
 
 
 
 
 
 
 
 
 
 
13f2998
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import os

import gradio as gr
import requests


models = [
    "HuggingFaceM4/tr_209_ift_mixture_opt_step-14000"
    # "HuggingFaceM4/tr_210_ift_mixture_opt_step-2500",
]

SYSTEM_PROMPT = """The following is a conversation between a highly knowledgeable and intelligent AI assistant, called Assistant, and a human user, called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts.

The conversation begins:
User:<fake_token_around_image><image:https://i1.pickpik.com/photos/515/906/355/kittens-cats-pet-cute-preview.jpg><fake_token_around_image>Describe this image.</s>
Assistant: Five kittens are standing together in the center of the photograph. From the left to right, there is one orange kitte, two kittens white and black stripes, and two brown kittens with an orange head. They are in bright green grass and it looks like they are moving forward.</s>
User:How about this image?<fake_token_around_image><image:https://cdn.pixabay.com/photo/2017/09/25/13/12/puppy-2785074_1280.jpg><fake_token_around_image>Can you describe it too?</s>
Assistant: A dog is lying on the floor, looking at the camera. It is looking directly at you. The dog has a white body and brown patches on its face and ears. Its eyes are dark. Its nose is black, and it has long, floppy ears, white paws, long fur, big eyes.</s>
User: What kind of breed is it?</s>
Assistant: It looks like a Cavalier King Charles Spaniel. These breeds are known for their gentle, affectionate nature. Their long ears and big, brown eyes give them a sweet, expressive face. Cavaliers are small dogs weighing between 13 and 20 pounds. They have a silky, medium-length coat that comes in various colors, including black and tan, tricolor, red and white, or black.</s>
User: What can you tell me about this breed of dogs?</s>
Assistant: One specific characteristic of the Cavalier King Charles Spaniel is its friendly and affectionate nature. This breed is known for being extremely sociable and forming strong bonds with their owners. They are often described as "velcro dogs" because they love to be close to their human companions, whether it's sitting on their laps, cuddling on the couch, or simply following them around the house.</s>
User: ghjkhjabnufs</s>
Assistant: That doesn’t seem to be a word. Could you ask me another way?</s>
User: Do you like Cavalier King Charles Spaniel?</s>
Assistant: I do not have personal opinions as I’m just a computer program. However, cavaliers are known for being excellent family pets due to their gentle and patient demeanor, making them great with children and other pets. Their affectionate nature also makes them ideal therapy dogs, as they can provide comfort and emotional support to those in need.</s>
User: How many dogs do you see in this image?<fake_token_around_image><image:https://i.dailymail.co.uk/i/pix/2011/07/01/article-2010308-0CD22A8300000578-496_634x414.jpg><fake_token_around_image></s>
Assistant: There is no dogs in this image. The picture shows a tennis player jumping to volley the ball.</s>"""

BAN_TOKENS = "<image>;<fake_token_around_image>"
EOS_TOKENS = "</s>;User"

import logging
import re
from io import BytesIO

import torch
from accelerate.utils import get_max_memory
from PIL import Image
from transformers import AutoTokenizer

from m4.models.vllama.configuration_vllama import VLlamaConfig
from m4.models.vllama.modeling_vllama import VLlamaForCausalLM
from m4.training.packing import image_attention_mask_for_packed_input_ids, incremental_to_binary_attention_mask
from m4.training.utils import build_image_transform


TOKENIZER_FAST = True
MAX_SEQ_LEN = 2048

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()


def load_tokenizer_model(model_name):
    tokenizer = AutoTokenizer.from_pretrained(
        model_name,
        use_fast=TOKENIZER_FAST,
        use_auth_token=os.getenv("HF_AUTH_TOKEN", True),
        truncation_side="left",
    )
    # tokenizer.padding_side = "left" -> we don't need that, do we?

    config = VLlamaConfig.from_pretrained(model_name, use_auth_token=os.getenv("HF_AUTH_TOKEN", True))
    max_memory_map = get_max_memory()

    for key in max_memory_map.keys():
        if key != "cpu":
            # Get this in GB
            max_memory_map[key] = max_memory_map[key] // (1024 * 1024 * 1024)
            # Decrease 2 for Pytorch overhead and 2 for the forward to be safe
            max_memory_map[key] = f"{max_memory_map[key] - 4} GiB"

    model = VLlamaForCausalLM.from_pretrained(
        model_name,
        use_auth_token=os.getenv("HF_AUTH_TOKEN", True),
        device_map="auto",
        offload_folder="./offload",
        torch_dtype=config.torch_dtype,
        max_memory=max_memory_map,
    )
    model.eval()
    print("Current device map:", model.hf_device_map)
    print("Model default generation config:", model.generation_config)
    # TODO: the device_map looks very inefficien right now. that could be improved
    return tokenizer, model


def fetch_images(url_images):
    headers = {
        "User-Agent": (
            "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0"
            " Safari/537.36"
        )
    }
    images = []
    for url in url_images:
        if isinstance(url, str):
            images.append(Image.open(BytesIO(requests.get(url, stream=True, headers=headers).content)))
        else:
            images.append(url)
    return images


def model_generation(
    prompt,
    images,
    tokenizer,
    model,
    temperature,
    no_repeat_ngram_size,
    max_new_tokens,
    min_length,
    ban_tokens,
    eos_tokens,
    force_words,
    repetition_penalty,
    hide_special_tokens,
    decoding_strategy,
    num_beams,
    length_penalty,
    top_k,
    top_p,
    penalty_alpha,
):
    # Preparing inputs
    tokens = tokenizer(
        [prompt],
        truncation=True,
        max_length=MAX_SEQ_LEN - 512,  # TODO: replace the 512 value with `max_new_tokens`
        padding=True,
        add_special_tokens=False,
    )

    input_ids = torch.tensor([[tokenizer.bos_token_id] + tokens.input_ids[0]])
    attention_mask = torch.tensor([[1] + tokens.attention_mask[0]])

    image_attention_mask = [
        incremental_to_binary_attention_mask(
            image_attention_mask_for_packed_input_ids(input_ids[0].unsqueeze(0), tokenizer)[0], num_classes=len(images)
        )
    ]

    image_transform = build_image_transform(eval=True)
    pixel_values = [torch.stack([image_transform(img) for img in images])]

    input_ids = input_ids.to(0)
    attention_mask = attention_mask.to(0)
    pixel_values = torch.stack(pixel_values).to(0)
    image_attention_mask = torch.cat(image_attention_mask, 0).to(0)

    # Excluding some words from the generation
    bad_words_ids = None
    ban_tokens = ban_tokens.replace("\\n", "\n")
    bad_words = ban_tokens.split(";")
    if len(bad_words) > 0:
        bad_words_ids = tokenizer(bad_words, add_special_tokens=False).input_ids

    # Forcing some words in the generation
    force_words_ids = None
    if force_words != "":
        force_words = force_words.replace("\\n", "\n")
        force_words = force_words.split(";")
        if len(force_words) > 0:
            force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids

    eos_token_ids = None
    if eos_tokens != "":
        eos_tokens = eos_tokens.replace("\\n", "\n")
        eos_tokens = eos_tokens.split(";")
        if len(eos_tokens) > 0:
            eos_token_ids = []
            for eos_token in eos_tokens:
                tokenized_eos_token = tokenizer(eos_token, add_special_tokens=False).input_ids
                if len(tokenized_eos_token) > 1:
                    raise ValueError(
                        f"eos_tokens should be one token, here {eos_token} is {len(tokenized_eos_token)} tokens:"
                        f" {tokenized_eos_token}"
                    )
                eos_token_ids += tokenized_eos_token

    # Inputs
    input_args = {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "pixel_values": pixel_values,
        "image_attention_mask": image_attention_mask,
    }
    # Common parameters to all decoding strategies
    # This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
    generation_args = {
        "temperature": temperature,
        "no_repeat_ngram_size": no_repeat_ngram_size,
        "max_new_tokens": max_new_tokens,
        "min_length": min_length,
        "bad_words_ids": bad_words_ids,
        "force_words_ids": force_words_ids,
        "repetition_penalty": repetition_penalty,
        "eos_token_id": eos_token_ids,
    }

    assert decoding_strategy in [
        "greedy",
        "beam_search",
        "beam_sampling",
        "sampling_top_k",
        "sampling_top_p",
        "contrastive_sampling",
    ]
    if decoding_strategy == "greedy":
        pass
    elif decoding_strategy == "beam_search":
        generation_args["num_beams"] = num_beams
        generation_args["length_penalty"] = length_penalty
        assert generation_args["num_beams"] > 1
    elif decoding_strategy == "beam_sampling":
        generation_args["num_beams"] = num_beams
        generation_args["length_penalty"] = length_penalty
        generation_args["do_sample"] = True
        assert generation_args["num_beams"] > 1
    elif decoding_strategy == "sampling_top_k":
        generation_args["do_sample"] = True
        generation_args["top_k"] = top_k
    elif decoding_strategy == "sampling_top_p":
        generation_args["do_sample"] = True
        generation_args["top_p"] = top_p
    elif decoding_strategy == "contrastive_sampling":
        generation_args["do_sample"] = True
        generation_args["penalty_alpha"] = penalty_alpha
        generation_args["top_k"] = top_k

    generated_tokens = model.generate(
        **input_args,
        **generation_args,
    )

    tokens = tokenizer.convert_ids_to_tokens(generated_tokens[0])
    decoded_skip_special_tokens = repr(
        tokenizer.batch_decode(generated_tokens, skip_special_tokens=hide_special_tokens)[0]
    )

    actual_generated_tokens = generated_tokens[:, input_ids.shape[-1] :]
    first_end_token = len(actual_generated_tokens[0])
    actual_generated_tokens = actual_generated_tokens[:, :first_end_token]
    generated_text = tokenizer.batch_decode(actual_generated_tokens, skip_special_tokens=hide_special_tokens)[0]

    logger.info(
        "Result: \n"
        f"----Prompt: `{prompt}`\n"
        f"----Tokens ids - prompt + generation: `{generated_tokens[0].tolist()}`\n"
        f"----Tokens converted - prompt + generation: `{tokens}`\n"
        f"----String decoded with skipped special tokens - prompt + generation: `{decoded_skip_special_tokens}`\n"
        f"----Total length - prompt + generation `{len(generated_tokens[0].tolist())}`\n"
        f"----Token ids - generation: `{actual_generated_tokens[0].tolist()}`\n"
        f"----Tokens converted - generation: `{tokenizer.convert_ids_to_tokens(actual_generated_tokens[0])}`\n"
        f"----String decoded with skipped special tokens - generation: `{generated_text}`\n"
        f"----Total length - generation: `{len(actual_generated_tokens[0].tolist())}`\n"
        f"----Generation mode: `{decoding_strategy}`\n"
        f"----Generation parameters: `{generation_args}`\n"
    )

    return generated_text


textbox = gr.Textbox(
    show_label=False,
    value=(
        "<fake_token_around_image><image:https://m.media-amazon.com/images/M/MV5BMjE4MTcwMTM1Nl5BMl5BanBnXkFtZTcwMTIwMzMzMw@@._V1_.jpg><fake_token_around_image>Describe"
        " all of the parts of this image."
    ),
    placeholder=(
        "To input images, use the following syntax:"
        " `<fake_token_around_image><image:URL_IMAGE><fake_token_around_image>textexttext`"
    ),
    visible=True,
    container=False,
)
with gr.Blocks(title="IDEFICS", theme=gr.themes.Base()) as demo:
    # state = gr.State()

    with gr.Row():
        with gr.Column(scale=3):
            with gr.Row(elem_id="model_selector_row"):
                model_selector = gr.Dropdown(
                    choices=models,
                    value=models[0] if len(models) > 0 else "",
                    interactive=True,
                    show_label=False,
                    container=False,
                )
            tokenizer, model = load_tokenizer_model(model_selector.value)

            imagebox = gr.Image(
                type="pil",
                label=(
                    "Image input - This image box is not supported yet! To include images, do through the text by"
                    " adding `<fake_token_around_image><image:IMAGE_URL><fake_token_around_image>`. The backend takes"
                    " care of parsing that <image:URL> and download the correponding image. That way, you can"
                    " technically interleave as many images and texts as you want. No need to add space before and"
                    " after `<fake_token_around_image>`"
                ),
            )

            with gr.Accordion("Parameters", open=False, visible=True) as parameter_row:
                temperature = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.2,
                    step=0.1,
                    interactive=True,
                    label="Temperature",
                )
                top_p = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.7,
                    step=0.1,
                    interactive=True,
                    label="Top P",
                )
                max_output_tokens = gr.Slider(
                    minimum=0,
                    maximum=1024,
                    value=512,
                    step=64,
                    interactive=True,
                    label="Max output tokens",
                )

        with gr.Column(scale=6):
            chatbot = gr.Chatbot(
                elem_id="chatbot",
                label="Idefics Chatbot",
                visible=True,
                height=550,
                value=[
                    [
                        (
                            "Where can we typically find animals like this"
                            " one?<fake_token_around_image><image:https://upload.wikimedia.org/wikipedia/commons/thumb/d/db/Alpaca_%2831562329701%29.jpg/640px-Alpaca_%2831562329701%29.jpg><fake_token_around_image>"
                        ),
                        (
                            "Animals like the one in the image, which is a llama, can typically be found in rural"
                            " areas, such as farms or ranches. Llamas are often used as pack animals in mountainous"
                            " regions, as they are well-adapted to the challenging terrain and can carry heavy loads."
                            " They are also valued for their wool, which is used to make clothing and other textiles."
                            " In addition, llamas are sometimes kept as pets or for their therapeutic benefits, as"
                            " they are known to be calm and gentle animals."
                        ),
                    ],
                    [
                        (
                            "How many of these animals can we fit into an engine like"
                            " that<fake_token_around_image><image:https://upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Nassau_County_Police_Bell_407.jpg/1200px-Nassau_County_Police_Bell_407.jpg><fake_token_around_image>?"
                        ),
                        (
                            "The image shows a helicopter with a large engine, but it is not possible to determine the"
                            " exact number of animals that can fit into it based on the image alone. The size and"
                            " capacity of the helicopter's engine would depend on various factors, such as the size of"
                            " the animals, the weight of the animals, and the size of the helicopter itself. However,"
                            " it is safe to assume that the helicopter is designed to carry a limited number of"
                            " animals, and it is not intended to be used as a means of transporting large groups of"
                            " animals."
                        ),
                    ],
                ],
            )
            with gr.Row():
                with gr.Column(scale=8):
                    textbox.render()
                with gr.Column(scale=1, min_width=60):
                    submit_btn = gr.Button(value="Submit", visible=True)
                with gr.Column(scale=1, min_width=20):
                    clear_btn = gr.ClearButton([textbox, chatbot])
                    cur_dir = os.path.dirname(os.path.abspath(__file__))
    # gr.Examples(examples=[
    #     [f"{cur_dir}/examples/extreme_ironing.jpg", "What is unusual about this image?"],
    #     [f"{cur_dir}/examples/waterview.jpg", "What are the things I should be cautious about when I visit here?"],
    # ], inputs=[textbox])
    # gr.Examples(
    #     examples=[
    #         [
    #             ("How many of these animals can we fit into an engine like that<fake_token_around_image><image:https://upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Nassau_County_Police_Bell_407.jpg/1200px-Nassau_County_Police_Bell_407.jpg><fake_token_around_image>?", "The image shows a helicopter with a large engine, but it is not possible to determine the exact number of animals that can fit into it based on the image alone. The size and capacity of the helicopter's engine would depend on various factors, such as the size of the animals, the weight of the animals, and the size of the helicopter itself. However, it is safe to assume that the helicopter is designed to carry a limited number of animals, and it is not intended to be used as a means of transporting large groups of animals."),
    #         ],
    #     ],
    #     inputs = [chatbot]
    # )

    def format_prompt_with_history_and_system_conditioning(current_user_prompt, history):
        resulting_text = SYSTEM_PROMPT
        for turn in history:
            user_utterance, assistant_utterance = turn
            resulting_text += f"\nUser: {user_utterance}</s>\nAssistant: {assistant_utterance}</s>"
        resulting_text += f"\nUser: {current_user_prompt}</s>\nAssistant:"
        return resulting_text

    def model_inference(
        user_prompt,
        chat_history,
    ):
        global model, tokenizer

        temperature = 1.0
        no_repeat_ngram_size = 0
        max_new_tokens = 512
        min_length = 16
        force_words = ""
        repetition_penalty = 1.0
        hide_special_tokens = False
        decoding_strategy = "greedy"
        num_beams = 3
        length_penalty = 1.0
        top_k = 50
        top_p = 0.95
        penalty_alpha = 0.95

        formated_prompt = format_prompt_with_history_and_system_conditioning(
            current_user_prompt=user_prompt.strip(),
            history=chat_history,
        )

        url_images = re.findall(r"<image(.*?)>", formated_prompt)
        for idx, url_image in enumerate(url_images):
            formated_prompt = formated_prompt.replace(url_image, "")
            url_images[idx] = url_images[idx][1:]
        images = fetch_images(url_images)

        generated_text = model_generation(
            prompt=formated_prompt,
            images=images,
            tokenizer=tokenizer,
            model=model,
            temperature=temperature,
            no_repeat_ngram_size=no_repeat_ngram_size,
            max_new_tokens=max_new_tokens,
            min_length=min_length,
            ban_tokens=BAN_TOKENS,
            eos_tokens=EOS_TOKENS,
            force_words=force_words,
            repetition_penalty=repetition_penalty,
            hide_special_tokens=hide_special_tokens,
            decoding_strategy=decoding_strategy,
            num_beams=num_beams,
            length_penalty=length_penalty,
            top_k=top_k,
            top_p=top_p,
            penalty_alpha=penalty_alpha,
        )

        chat_history.append((user_prompt, generated_text.strip("</s>")))
        return "", chat_history

    textbox.submit(
        fn=model_inference,
        inputs=[textbox, chatbot],
        outputs=[textbox, chatbot],
    )
    submit_btn.click(
        fn=model_inference,
        inputs=[textbox, chatbot],
        outputs=[textbox, chatbot],
    )

demo.queue()
demo.launch()