VictorSanh's picture
Update visualization
217780a
raw
history blame
7.5 kB
"""
perceiver.py
Generic interface to various configurations of the Perceiver Resampler, that simply takes in a series of (potentially
time-indexed) contextual embeddings, and "resamples" (compresses) them down to a pre-specified number of latents!
Note that the Perceiver in general resamples based solely off the *long-range* context; there's a nice opportunity here
to prime the Perceiver Resampler with say a single layer's worth of language embeddings (the target domain), and use
that to softly "retrieve & compress" what we need --> this would be a novel contribution we should explore.
References:
- DeepMind's Flamingo: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model
- Code borrowed w/ love from: https://github.com/lucidrains/flamingo-pytorch
"""
from typing import Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange, repeat
class PerceiverResampler(nn.Module):
def __init__(self, config, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int) -> None:
"""
Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or
MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then
returns a Tensor of shape [bsz, n_latents, embed_dim].
:param embed_dim: Dimensionality of embeddings being fed to the Perceiver Resampler (also dimensionality of
latent embeddings *returned* by the Perceiver Resampler. Could be e.g., VIT embed_dim, ResNet
pool dim, and so on.
:param depth: Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
:param n_heads: Number of heads in each Transformer block (for multi-headed self-attention).
:param head_dim: Dimensionality of each head projection in the Transformer block.
:param n_latents: Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
"""
super().__init__()
self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents
self.qk_layer_norms = config.qk_layer_norms_perceiver
# Create Latents for Perceiver
self.latents = nn.Parameter(torch.randn(self.n_latents, self.embed_dim), requires_grad=True)
self.intermediate_dim = (
self.embed_dim * 4 if not hasattr(config, "vision_embed_dim") else config.vision_embed_dim * 4
)
# Create Transformer Blocks
self.blocks = nn.ModuleList(
[
nn.ModuleList(
[
PerceiverAttention(self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms),
MLP(self.intermediate_dim, config),
]
)
for _ in range(depth)
]
)
self.layer_norm = nn.LayerNorm(self.embed_dim)
def forward(self, context: torch.Tensor) -> torch.Tensor:
"""Resample arbitrary length context & *compress* down to self.n_latents latent embeddings"""
latents = repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0])
# Feed through Perceiver Attention blocks...
for attn, ff in self.blocks:
latents = attn(context, latents) + latents
latents = ff(latents) + latents
return self.layer_norm(latents)
class PerceiverAttention(nn.Module):
def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool) -> None:
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
super().__init__()
self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim
self.qk_layer_norms = qk_layer_norms
# Normalization & Scaling
self.context_layer_norm = nn.LayerNorm(self.embed_dim)
self.latents_layer_norm = nn.LayerNorm(self.embed_dim)
if self.qk_layer_norms:
self.q_layer_norm = nn.LayerNorm(self.head_dim)
self.k_layer_norm = nn.LayerNorm(self.head_dim)
self.qk_scale = self.head_dim**-0.5
# Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers).
self.q_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
self.output_proj = nn.Linear(self.n_heads * self.head_dim, embed_dim, bias=False)
def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
"""
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
:param context: Tensor of shape [bsz, seq, embed_dim] representing long-form context to resample.
:param latents: Tensor of shape [bsz, n_latents, embed_dim] representing fixed length latents to compress to.
:return: Tensor of shape [bsz, n_latents, embed_dim] representing attention over latents w/ cross from context.
"""
context = self.context_layer_norm(context)
latents = self.latents_layer_norm(latents)
# Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn!
# Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents`
q = self.q_proj(latents)
k = self.k_proj(torch.cat([context, latents], dim=-2))
v = self.v_proj(torch.cat([context, latents], dim=-2))
# Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call)
# =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)]
q, k, v = [rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads) for x in (q, k, v)]
if self.qk_layer_norms:
q = self.q_layer_norm(q)
k = self.k_layer_norm(k)
scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k)
stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach())
attn = stabilized_scores.softmax(dim=-1)
# Attend & project back to output...
resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v)
return self.output_proj(
rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads)
)
class MLP(nn.Module):
def __init__(self, intermediate_size, config):
"""Simple MLP block with intermediate_size and embedding size"""
super().__init__()
self.embed_dim = config.vision_embed_dim
self.ln = nn.LayerNorm(self.embed_dim)
self.fc = nn.Linear(self.embed_dim, intermediate_size, bias=False)
self.act = nn.ReLU()
self.c_proj = nn.Linear(intermediate_size, self.embed_dim, bias=False)
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.ln(hidden_states)
hidden_states = self.fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
return hidden_states