Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" LLaMA model configuration""" | |
import os | |
from typing import Tuple, Union | |
from transformers import AutoConfig | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {} | |
class VLlamaConfig(PretrainedConfig): | |
r""" | |
TODO: update docstring with respect to new arguments | |
This is the configuration class to store the configuration of a [`~LlamaModel`]. It is used to instantiate an LLaMA | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the LLaMA-7B. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 32000): | |
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`~LlamaModel`] | |
hidden_size (`int`, *optional*, defaults to 4096): | |
Dimension of the hidden representations. | |
intermediate_size (`int`, *optional*, defaults to 11008): | |
Dimension of the MLP representations. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the decoder. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
rms_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the rms normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
tie_word_embeddings(`bool`, *optional*, defaults to `False`): | |
Whether to tie weight embeddings | |
Example: | |
```python | |
>>> from transformers import LlamaModel, LlamaConfig | |
>>> # Initializing a LLaMA llama-7b style configuration | |
>>> configuration = LlamaConfig() | |
>>> # Initializing a model from the llama-7b style configuration | |
>>> model = LlamaModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "vllama" | |
def __init__( | |
self, | |
vocab_size=32000, | |
additional_vocab_size=0, | |
hidden_size=4096, | |
intermediate_size=11008, | |
num_hidden_layers=32, | |
num_attention_heads=32, | |
dropout=0.0, | |
hidden_act="silu", | |
initializer_range=0.02, | |
alpha_initializer="ones", | |
alphas_initializer_range=0.0, | |
alpha_type="vector", | |
rms_norm_eps=1e-6, | |
use_cache=True, | |
pad_token_id=0, | |
bos_token_id=1, | |
eos_token_id=2, | |
tie_word_embeddings=False, | |
cross_layer_interval=1, | |
cross_layer_activation_function="swiglu", | |
qk_layer_norms=False, | |
qk_layer_norms_perceiver=False, | |
freeze_text_layers=True, | |
freeze_text_module_exceptions=[], | |
freeze_lm_head=False, | |
freeze_vision_layers=True, | |
freeze_vision_module_exceptions=[], | |
vision_model_name="google/vit-base-patch16-224", | |
vision_model_params="{}", | |
vision_embed_dim=768, | |
vision_image_size=224, | |
use_resampler=False, | |
resampler_n_latents=64, | |
resampler_depth=6, | |
resampler_n_heads=16, | |
resampler_head_dim=96, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.additional_vocab_size = additional_vocab_size | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.dropout = dropout | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.alpha_initializer = alpha_initializer | |
self.alphas_initializer_range = alphas_initializer_range | |
self.alpha_type = alpha_type | |
self.rms_norm_eps = rms_norm_eps | |
self.use_cache = use_cache | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |
self.cross_layer_interval = cross_layer_interval | |
self.cross_layer_activation_function = cross_layer_activation_function | |
self.qk_layer_norms = qk_layer_norms | |
self.qk_layer_norms_perceiver = qk_layer_norms_perceiver | |
self.freeze_vision_layers = freeze_vision_layers | |
self.vision_model_name = vision_model_name | |
self.vision_model_params = vision_model_params | |
self.freeze_text_layers = freeze_text_layers | |
self.freeze_text_module_exceptions = freeze_text_module_exceptions | |
self.freeze_vision_module_exceptions = freeze_vision_module_exceptions | |
self.freeze_lm_head = freeze_lm_head | |
self.vision_embed_dim = vision_embed_dim | |
self.vision_image_size = vision_image_size | |
# Resampler params | |
self.use_resampler = use_resampler | |
self.resampler_n_latents = resampler_n_latents | |
self.resampler_depth = resampler_depth | |
self.resampler_n_heads = resampler_n_heads | |
self.resampler_head_dim = resampler_head_dim | |
# IMPORTANT: Do not do any __init__ args-based checks in the constructor, since | |
# PretrainedConfig.from_dict first instantiates the class with the config dict and only then | |
# updates the config object with `kwargs` from from_pretrained, so during the instantiation | |
# of this object many attributes have default values and haven't yet been overridden. | |
# Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run. | |
def check_compatibilities(self): | |
vision_model_params = eval(self.vision_model_params) | |
config = AutoConfig.from_pretrained(self.vision_model_name, **vision_model_params) | |
if hasattr(config, "vision_config"): | |
vision_config = config.vision_config | |
else: | |
vision_config = config | |
vision_embed_dim = vision_config.hidden_size | |
if self.vision_embed_dim != vision_embed_dim: | |
raise ValueError( | |
f"vision_embed_dim ({self.vision_embed_dim}) must match the hidden size of the vision model" | |
f" ({vision_embed_dim})" | |
) | |
vision_image_size = vision_config.image_size | |
if self.vision_image_size != vision_image_size: | |
raise ValueError( | |
f"vision_image_size ({self.vision_image_size}) must match the hidden size of the vision model" | |
f" ({vision_image_size})" | |
) | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
outputs = super(VLlamaConfig, cls).from_pretrained(pretrained_model_name_or_path, **kwargs) | |
if isinstance(outputs, Tuple): | |
# When called with return_unused_kwargs=True, the first item will be the config | |
outputs[0].check_compatibilities() | |
else: | |
outputs.check_compatibilities() | |
return outputs | |