Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,574 Bytes
1896bc8 c497b41 1896bc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
from typing import List, Optional, Tuple
from PIL import Image
from playwright.sync_api import sync_playwright
import os
import gradio as gr
from gradio_client.client import DEFAULT_TEMP_DIR
from transformers import AutoProcessor, AutoModelForCausalLM
API_TOKEN = os.getenv("HF_AUTH_TOKEN")
# PROCESSOR = AutoProcessor.from_pretrained(
# "HuggingFaceM4/img2html",
# token=API_TOKEN,
# )
IMAGE_GALLERY_PATHS = [
f"example_images/{ex_image}"
for ex_image in os.listdir(f"example_images")
]
import subprocess
def install_playwright():
try:
subprocess.run(["playwright", "install"], check=True)
print("Playwright installation successful.")
except subprocess.CalledProcessError as e:
print(f"Error during Playwright installation: {e}")
# Call the function to install Playwright
install_playwright()
def add_file_gallery(selected_state: gr.SelectData, gallery_list: List[str]):
# return (
# f"example_images/{gallery_list.root[selected_state.index].image.orig_name}",
# "",
# )
return f"example_images/{gallery_list.root[selected_state.index].image.orig_name}"
def expand_layout():
return gr.Column(scale=2), gr.Textbox()
def render_webpage(
html_css_code,
):
with sync_playwright() as p:
browser = p.chromium.launch(headless=True)
context = browser.new_context(
user_agent=(
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0"
" Safari/537.36"
)
)
page = context.new_page()
page.set_content(html_css_code)
page.wait_for_load_state("networkidle")
output_path_screenshot = f"{DEFAULT_TEMP_DIR}/{hash(html_css_code)}.png"
page.screenshot(path=output_path_screenshot, full_page=True)
context.close()
browser.close()
return Image.open(output_path_screenshot)
def model_inference(
image,
):
CAR_COMPNAY = """<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>XYZ Car Company</title>
<style>
body {
font-family: 'Arial', sans-serif;
margin: 0;
padding: 0;
background-color: #f4f4f4;
}
header {
background-color: #333;
color: #fff;
padding: 1em;
text-align: center;
}
nav {
background-color: #555;
color: #fff;
padding: 0.5em;
text-align: center;
}
nav a {
color: #fff;
text-decoration: none;
padding: 0.5em 1em;
margin: 0 1em;
}
section {
padding: 2em;
}
h2 {
color: #333;
}
.car-container {
display: flex;
flex-wrap: wrap;
justify-content: space-around;
}
.car-card {
width: 300px;
margin: 1em;
border: 1px solid #ddd;
border-radius: 5px;
overflow: hidden;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
.car-image {
width: 100%;
height: 150px;
object-fit: cover;
}
.car-details {
padding: 1em;
}
footer {
background-color: #333;
color: #fff;
text-align: center;
padding: 1em;
position: fixed;
bottom: 0;
width: 100%;
}
</style>
</head>
<body>
<header>
<h1>XYZ Car Company</h1>
</header>
<nav>
<a href="#">Home</a>
<a href="#">Models</a>
<a href="#">About Us</a>
<a href="#">Contact</a>
</nav>
<section>
<h2>Our Cars</h2>
<div class="car-container">
<div class="car-card">
<img src="car1.jpg" alt="Car 1" class="car-image">
<div class="car-details">
<h3>Model A</h3>
<p>Description of Model A.</p>
</div>
</div>
<div class="car-card">
<img src="car2.jpg" alt="Car 2" class="car-image">
<div class="car-details">
<h3>Model B</h3>
<p>Description of Model B.</p>
</div>
</div>
<!-- Add more car cards as needed -->
</div>
</section>
<footer>
© 2024 XYZ Car Company. All rights reserved.
</footer>
</body>
</html>"""
rendered_page = render_webpage(CAR_COMPNAY)
return CAR_COMPNAY, rendered_page
# textbox = gr.Textbox(
# placeholder="Upload an image and ask the AI to create a meme!",
# show_label=False,
# value="Write a meme about this image.",
# visible=True,
# container=False,
# label="Text input",
# scale=8,
# max_lines=5,
# )
generated_html = gr.Textbox(
label="IDEFICS Generated HTML",
elem_id="generated_html",
)
rendered_html = gr.Image(
)
css = """
.gradio-container{max-width: 1000px!important}
h1{display: flex;align-items: center;justify-content: center;gap: .25em}
*{transition: width 0.5s ease, flex-grow 0.5s ease}
"""
with gr.Blocks(title="Img2html", theme=gr.themes.Base(), css=css) as demo:
with gr.Row(equal_height=True):
# scale=2 when expanded
with gr.Column(scale=4, min_width=250) as upload_area:
imagebox = gr.Image(
type="filepath", label="Image to HTML", height=272, visible=True, sources=["upload", "clipboard"],
)
with gr.Group():
with gr.Row():
submit_btn = gr.Button(
value="▶️ Submit", visible=True, min_width=120
)
clear_btn = gr.ClearButton(
[imagebox, generated_html, rendered_html], value="🧹 Clear", min_width=120
)
regenerate_btn = gr.Button(
value="🔄 Regenerate", visible=True, min_width=120
)
with gr.Column(scale=5) as result_area:
rendered_html.render()
with gr.Row():
generated_html.render()
with gr.Row(equal_height=True):
template_gallery = gr.Gallery(
value=IMAGE_GALLERY_PATHS,
label="Templates Gallery",
allow_preview=False,
columns=4,
elem_id="gallery",
show_share_button=False,
height=400,
)
gr.on(
triggers=[
imagebox.upload,
submit_btn.click,
template_gallery.select,
regenerate_btn.click,
],
fn=model_inference,
inputs=[
imagebox,
],
outputs=[generated_html, rendered_html],
queue=False,
)
regenerate_btn.click(
fn=model_inference,
inputs=[
imagebox,
],
outputs=[generated_html, rendered_html],
queue=False,
)
template_gallery.select(
fn=add_file_gallery,
inputs=[template_gallery],
outputs=[imagebox],
queue=False,
)
demo.load(
# fn=choose_gallery,
# inputs=[gallery_type_choice],
# outputs=[template_gallery],
queue=False,
)
demo.queue(max_size=40, api_open=False)
demo.launch(max_threads=400)
|