Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,042 Bytes
1896bc8 b537793 01b5c05 844c526 b537793 844c526 b537793 4a9f0a0 844c526 b537793 844c526 b537793 01b5c05 844c526 47d2396 844c526 47d2396 844c526 b537793 1896bc8 c497b41 844c526 85f677d 844c526 1896bc8 85f677d 1896bc8 01b5c05 1896bc8 844c526 34db65e 844c526 34db65e 4a9f0a0 34db65e 4a9f0a0 34db65e e137273 4a9f0a0 e137273 4a9f0a0 e137273 34db65e 1896bc8 b537793 1896bc8 521b81b 1896bc8 b537793 1896bc8 b537793 5139ca9 d67a821 1896bc8 844c526 b537793 1896bc8 4a9f0a0 1896bc8 b537793 1896bc8 b537793 1896bc8 be3e79e 1896bc8 b537793 1896bc8 1056de2 1896bc8 844c526 1896bc8 e137273 b537793 1896bc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import os
import subprocess
import spaces
import torch
import gradio as gr
from gradio_client.client import DEFAULT_TEMP_DIR
from playwright.sync_api import sync_playwright
from threading import Thread
from transformers import AutoProcessor, AutoModelForCausalLM, TextIteratorStreamer
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
from typing import List
from PIL import Image
from transformers.image_transforms import resize, to_channel_dimension_format
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
DEVICE = torch.device("cuda")
PROCESSOR = AutoProcessor.from_pretrained(
"HuggingFaceM4/VLM_WebSight_finetuned",
)
MODEL = AutoModelForCausalLM.from_pretrained(
"HuggingFaceM4/VLM_WebSight_finetuned",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
).to(DEVICE)
if MODEL.config.use_resampler:
image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
else:
image_seq_len = (
MODEL.config.vision_config.image_size // MODEL.config.vision_config.patch_size
) ** 2
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
## Utils
def convert_to_rgb(image):
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
# for transparent images. The call to `alpha_composite` handles this case
if image.mode == "RGB":
return image
image_rgba = image.convert("RGBA")
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
alpha_composite = Image.alpha_composite(background, image_rgba)
alpha_composite = alpha_composite.convert("RGB")
return alpha_composite
# The processor is the same as the Idefics processor except for the BICUBIC interpolation inside siglip,
# so this is a hack in order to redefine ONLY the transform method
def custom_transform(x):
x = convert_to_rgb(x)
x = to_numpy_array(x)
x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
x = PROCESSOR.image_processor.normalize(
x,
mean=PROCESSOR.image_processor.image_mean,
std=PROCESSOR.image_processor.image_std
)
x = to_channel_dimension_format(x, ChannelDimension.FIRST)
x = torch.tensor(x)
return x
## End of Utils
IMAGE_GALLERY_PATHS = [
f"example_images/{ex_image}"
for ex_image in os.listdir(f"example_images")
]
def install_playwright():
try:
subprocess.run(["playwright", "install"], check=True)
print("Playwright installation successful.")
except subprocess.CalledProcessError as e:
print(f"Error during Playwright installation: {e}")
install_playwright()
def add_file_gallery(
selected_state: gr.SelectData,
gallery_list: List[str]
):
return Image.open(gallery_list.root[selected_state.index].image.path)
def render_webpage(
html_css_code,
):
with sync_playwright() as p:
browser = p.chromium.launch(headless=True)
context = browser.new_context(
user_agent=(
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0"
" Safari/537.36"
)
)
page = context.new_page()
page.set_content(html_css_code)
page.wait_for_load_state("networkidle")
output_path_screenshot = f"{DEFAULT_TEMP_DIR}/{hash(html_css_code)}.png"
_ = page.screenshot(path=output_path_screenshot, full_page=True)
context.close()
browser.close()
return Image.open(output_path_screenshot)
@spaces.GPU(duration=180)
def model_inference(
image,
):
if image is None:
raise ValueError("`image` is None. It should be a PIL image.")
inputs = PROCESSOR.tokenizer(
f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>",
return_tensors="pt",
add_special_tokens=False,
)
inputs["pixel_values"] = PROCESSOR.image_processor(
[image],
transform=custom_transform
)
inputs = {
k: v.to(DEVICE)
for k, v in inputs.items()
}
streamer = TextIteratorStreamer(
PROCESSOR.tokenizer,
skip_prompt=True,
)
generation_kwargs = dict(
inputs,
bad_words_ids=BAD_WORDS_IDS,
max_length=4096,
streamer=streamer,
)
# Regular generation version
# generation_kwargs.pop("streamer")
# generated_ids = MODEL.generate(**generation_kwargs)
# generated_text = PROCESSOR.batch_decode(
# generated_ids,
# skip_special_tokens=True
# )[0]
# rendered_page = render_webpage(generated_text)
# return generated_text, rendered_page
# Token streaming version
thread = Thread(
target=MODEL.generate,
kwargs=generation_kwargs,
)
thread.start()
generated_text = ""
for new_text in streamer:
if "</s>" in new_text:
new_text = new_text.replace("</s>", "")
rendered_image = render_webpage(generated_text)
else:
rendered_image = None
generated_text += new_text
yield generated_text, rendered_image
generated_html = gr.Code(
label="Extracted HTML",
elem_id="generated_html",
)
rendered_html = gr.Image(
label="Rendered HTML",
show_download_button=False,
show_share_button=False,
)
# rendered_html = gr.HTML(
# label="Rendered HTML"
# )
css = """
.gradio-container{max-width: 1000px!important}
h1{display: flex;align-items: center;justify-content: center;gap: .25em}
*{transition: width 0.5s ease, flex-grow 0.5s ease}
"""
with gr.Blocks(title="Screenshot to HTML", theme=gr.themes.Base(), css=css) as demo:
gr.Markdown(
"Since the model used for this demo *does not generate images*, it is more effective to input standalone website elements or sites with minimal image content."
)
with gr.Row(equal_height=True):
with gr.Column(scale=4, min_width=250) as upload_area:
imagebox = gr.Image(
type="pil",
label="Screenshot to extract",
visible=True,
sources=["upload", "clipboard"],
)
with gr.Group():
with gr.Row():
submit_btn = gr.Button(
value="▶️ Submit", visible=True, min_width=120
)
clear_btn = gr.ClearButton(
[imagebox, generated_html, rendered_html], value="🧹 Clear", min_width=120
)
regenerate_btn = gr.Button(
value="🔄 Regenerate", visible=True, min_width=120
)
with gr.Column(scale=4):
rendered_html.render()
with gr.Row():
generated_html.render()
with gr.Row():
template_gallery = gr.Gallery(
value=IMAGE_GALLERY_PATHS,
label="Templates Gallery",
allow_preview=False,
columns=5,
elem_id="gallery",
show_share_button=False,
height=400,
)
gr.on(
triggers=[
imagebox.upload,
submit_btn.click,
regenerate_btn.click,
],
fn=model_inference,
inputs=[imagebox],
outputs=[generated_html, rendered_html],
)
regenerate_btn.click(
fn=model_inference,
inputs=[imagebox],
outputs=[generated_html, rendered_html],
)
template_gallery.select(
fn=add_file_gallery,
inputs=[template_gallery],
outputs=[imagebox],
).success(
fn=model_inference,
inputs=[imagebox],
outputs=[generated_html, rendered_html],
)
demo.load()
demo.queue(max_size=40, api_open=False)
demo.launch(max_threads=400)
|