Spaces:
Running
Running
File size: 2,551 Bytes
62e6de0 8b1a1d6 73bccd6 8b1a1d6 0e5e2a1 1f7f07d 8b1a1d6 0e5e2a1 8b1a1d6 0e5e2a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
---
title: README
emoji: π
colorFrom: purple
colorTo: green
sdk: static
pinned: false
---
# HuggingFaceTB
This is the home for small LLMs (SmolLM) and high quality pre-training datasets, such as [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia) and [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus).
We released:
- [FineWeb-Edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu): a filtered version of FineWeb dataset for educational content, paper available [here](https://huggingface.co/papers/2406.17557).
- [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia): the largest open synthetic dataset, with 25B tokens and more than 30M samples. It contains synthetic textbooks, blog posts, stories, posts, and WikiHow articles generated by Mixtral-8x7B-Instruct-v0.1. Blog post available [here](https://huggingface.co/blog/cosmopedia).
- [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus): the pre-training corpus of SmolLM models including **Cosmopedia v0.2**, **FineWeb-Edu dedup** and **Python-Edu**. Blog post available [here](https://huggingface.co/blog/smollm).
- [SmolLM models](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966) and [SmolLM2 models](https://huggingface.co/collections/HuggingFaceTB/smollm2-checkpoints-6723884218bcda64b34d7db9): a series of strong small models in three sizes: 135M, 360M and 1.7B
**News ποΈ**
- SmolLM2: you can find our most capable model SmolLM2-1.7B here: https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct
<div align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/kIUMhq5p_7Vl74lihlS8y.png" width="600"/>
<p><em>Evaluation of SmolLM2 and other models on common benchmarks. For more details, refer to the <a href="https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct/" target="_blank">model card</a>.</em></p>
</div>
- We released our SFT mix SmolTalk, a diverse dataset of 1M synthetic instruction and answer pairs to improve instruction following and reasoning: https://huggingface.co/datasets/HuggingFaceTB/smoltalk
<div align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/hdA2qVsKtoZnPKltNbvZB.png" width="800"/>
<p><em>Comparison of models finetuned on SmolTalk and Orca AgentInstruct 1M. For more details, refer to the <a href="https://huggingface.co/datasets/HuggingFaceTB/smoltalk" target="_blank">dataset card</a>.</em></p>
</div> |