Spaces:
Sleeping
Sleeping
import streamlit as st | |
import streamlit_authenticator as stauth | |
from code.functions import pipeline_svg | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
from io import BytesIO | |
import copy | |
import yaml | |
from yaml.loader import SafeLoader | |
logo = Image.open("seguinmoreau.png") | |
st.set_page_config( | |
page_title="Moulinette Logos", | |
page_icon=logo, | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# Authentication | |
with open('users.yaml') as file: | |
config = yaml.load(file, Loader=SafeLoader) | |
authenticator = stauth.Authenticate( | |
config['credentials'], | |
config['cookie']['name'], | |
config['cookie']['key'], | |
config['cookie']['expiry_days'], | |
config['preauthorized'] | |
) | |
name, authentication_status, username = authenticator.login('Login', 'main') | |
if not authentication_status: | |
st.error("Nom d'utilisateur ou mot de passe incorrect") | |
elif authentication_status is None: | |
st.warning("Rentrer nom d'utilisateur et mot de passe") | |
elif authentication_status: | |
authenticator.logout('Logout', 'main') | |
# ------------------------------ | |
inch_value = 2.54 | |
logo = Image.open('seguinmoreau.png') | |
st.image(logo, width=200) | |
st.markdown( | |
""" | |
# Boîte à Outils de correction de logos :wrench: | |
Bienvenue dans la boîte à outils de correction de logos de Seguin Moreau. | |
### :hammer: Les outils | |
Dans cette boîte à outils, vous trouverez: | |
* Un outil de Correction automatique de logo (enlever les petits défauts, lissage, vectorisation, grossissement des traits trop fins). | |
### :bulb: Mode d'emploi | |
* Cliquer sur 'Browse files' | |
* Sélectionner un logo | |
* La correction est automatique. Si la correction ne vous convient pas, il est possible de régler les paramètres en cliquant sur 'Paramétrage' à droite de l'image. | |
* Les deux paramètres permettent de corriger les défauts liés à la présence de gris sur le logo ou la 'pixélisation' du logo trop importante. | |
""" | |
) | |
uploaded_files = st.file_uploader("Choisir un logo", accept_multiple_files=True) | |
image_width = 500 | |
size_value = st.slider("Largeur de trait minimum", min_value=1, max_value=21, value=7, step=2) | |
size_value = (size_value - 1) // 2 | |
# kernel_type_str = st.selectbox("Kernel type", ["Ellipse", "Rectangle", "Cross"]) | |
kernel_type_str = "Ellipse" | |
dict_kernel_type = {"Ellipse": cv2.MORPH_ELLIPSE, "Rectangle": cv2.MORPH_RECT, "Cross": cv2.MORPH_CROSS} | |
kernel_type = dict_kernel_type[kernel_type_str] | |
for uploaded_file in uploaded_files: | |
col1, col2, col3 = st.columns([1, 1, 1]) | |
col3.markdown("---") | |
image = Image.open(uploaded_file).convert('L') | |
image_input = np.array(image) | |
image = copy.deepcopy(image_input) | |
col1.image(image_input / 255.0, caption="Image d'entrée", use_column_width='auto') | |
with col3: | |
with st.expander(":gear: Paramétrage"): | |
st.write("Si l'image contient du gris, faire varier le seuil ci-dessous:") | |
threshold = st.slider("Seuil pour convertir l'image en noir&blanc.", min_value=0, max_value=255, | |
value=0, | |
step=1, key=f"{uploaded_file}_slider_threshold") | |
st.write("Si l'image est pixelisée, ou contient trop de détails, " | |
"augmenter la valeur ci-dessous:") | |
blur_value = st.slider("Seuil pour lisser l'image", min_value=1, max_value=11, value=1, step=2, | |
key=f"{uploaded_file}_slider_gaussian_sigma") | |
st.write("Si l'image contient des traits très fin (de l'odre du pixel)," | |
" augmenter le seuil ci-dessous, de 1 par 1:") | |
dilate_lines_value = st.slider("Dilatation de l'image d'origine: (en pixels)", min_value=0, max_value=5, | |
value=0, step=1, key=f"{uploaded_file}_slider_dilation_image") | |
st.write("Taille d'exportation d'image:") | |
dpi_value = st.number_input("Valeur dpi:", key=f"{uploaded_file}_number_dpi_value", value=200) | |
side_width_value = st.number_input("Taille max de côté cible (cm):", | |
key=f"{uploaded_file}_number_target_value", value=20) | |
new_largest_side_value = int(side_width_value / inch_value * dpi_value) | |
h, w, *_ = image.shape | |
# Resize image | |
ratio = w / h | |
if ratio > 1: | |
width = new_largest_side_value | |
height = int(new_largest_side_value / ratio) | |
else: | |
height = new_largest_side_value | |
width = int(ratio * new_largest_side_value) | |
target_width_value = st.number_input("Largeur cible (cm):", key=f"{uploaded_file}_number_width_value", | |
value=0) | |
target_height_value = st.number_input("Hauteur cible (cm):", key=f"{uploaded_file}_number_height_value", | |
value=0) | |
if target_width_value > 0 and target_height_value == 0: | |
width = int(target_width_value / inch_value * dpi_value) | |
height = int(width / ratio) | |
elif target_height_value > 0 and target_width_value == 0: | |
height = int(target_height_value / inch_value * dpi_value) | |
width = int(height * ratio) | |
elif target_height_value > 0 and target_width_value > 0: | |
st.warning("Vous ne pouvez pas modifier la largeur et la hauteur simultanément.") | |
if threshold > 0: | |
image = (image > threshold) * 255 | |
image = image.astype('uint8') | |
if blur_value > 0: | |
image = cv2.GaussianBlur(image, (blur_value, blur_value), blur_value - 1) | |
# Process image cv32f ==> cv32f | |
img_final = pipeline_svg(image, size_value=size_value, level=1, threshold=threshold, kernel_type=kernel_type, | |
dilate_lines_value=dilate_lines_value) | |
col2.image(img_final, caption="Image corrigée", use_column_width='auto') | |
# Check for grayscale | |
tolerance = 10 | |
ratio_of_gray_pixels = int(np.sum((tolerance < image) * (image < 255 - tolerance)) / np.size(image) * 100) | |
if ratio_of_gray_pixels > 1: | |
col3.warning(f":warning: Le nombre de pixels gris est élevé: {ratio_of_gray_pixels} % > 1%") | |
# Check reconstruction fidelity | |
distance = np.mean((np.array(image) - img_final) ** 2) | |
if distance > 10: | |
col3.warning( | |
f":warning: Le logo est peut-être trop dégradé (MSE={distance:.2f} > 10).\nVérifier visuellement.") | |
dim = (width, height) | |
# resize image | |
resized_img_final = cv2.resize(img_final, dim, interpolation=cv2.INTER_AREA) | |
resized_image_input = cv2.resize(image_input, dim, interpolation=cv2.INTER_AREA) | |
buf = BytesIO() | |
# img_stacked = np.hstack((resized_image_input, resized_img_final)) | |
img_final = Image.fromarray(resized_image_input).convert("L") | |
img_final.save(buf, format="PNG") | |
byte_im = buf.getvalue() | |
btn = col3.download_button( | |
label=":inbox_tray: Télécharger l'image", | |
data=byte_im, | |
file_name=f"corrected_{uploaded_file.name}", | |
mime="image/png" | |
) | |