import streamlit as st from code.functions import pipeline_svg from PIL import Image import cv2 import numpy as np from io import BytesIO import copy inch_value = 2.54 logo = Image.open("seguinmoreau.png") st.set_page_config( page_title="Moulinette Logos", page_icon=logo, layout="wide", initial_sidebar_state="expanded" ) st.markdown( """ # Boîte à Outils de correction de logos :wrench: Bienvenue dans la boîte à outils de correction de logos de Seguin Moreau. ### :hammer: Les outils Dans cette boîte à outils, vous trouverez: * Un outil de Correction automatique de logo (enlever les petits défauts, lissage, vectorisation, grossissement des traits trop fins. * Un outil de Vectorisation (image en pixels => image vectorisée => image en pixels). ### :bulb: Mode d'emploi * Cliquer sur 'Browse files' * Sélectionner un logo * La correction est automatique. Si la correction ne vous convient pas, il est possible de régler les paramètres en cliquant sur 'Paramétrage' à droite de l'image. * Les deux paramètres permettent de corriger les défauts liés à la présence de gris sur le logo ou la 'pixélisation' du logo trop importante. """ ) logo = Image.open('seguinmoreau.png') st.image(logo, width=100) uploaded_files = st.file_uploader("Choisir un logo", accept_multiple_files=True) image_width = 500 size_value = st.slider("Largeur de trait minimum", min_value=1, max_value=21, value=7, step=2) size_value = (size_value - 1) // 2 #kernel_type_str = st.selectbox("Kernel type", ["Ellipse", "Rectangle", "Cross"]) kernel_type_str = "Ellipse" dict_kernel_type = {"Ellipse": cv2.MORPH_ELLIPSE, "Rectangle": cv2.MORPH_RECT, "Cross": cv2.MORPH_CROSS} kernel_type = dict_kernel_type[kernel_type_str] for uploaded_file in uploaded_files: col1, col2, col3 = st.columns([1, 1, 1]) col3.markdown("---") image = Image.open(uploaded_file).convert('L') image_input = np.array(image) image = copy.deepcopy(image_input) col1.image(image_input/255.0, caption="Image d'entrée", use_column_width='auto') with col3: with st.expander(":gear: Paramétrage"): st.write("Si l'image contient du gris, faire varier le seuil ci-dessous:") threshold = st.slider("Seuil pour convertir l'image en noir&blanc.", min_value=0, max_value=255, value=0, step=1, key=f"{uploaded_file}_slider_threshold") st.write("Si l'image est pixelisée, ou contient trop de détails, " "augmenter la valeur ci-dessous:") blur_value = st.slider("Seuil pour lisser l'image", min_value=1, max_value=11, value=1, step=2, key=f"{uploaded_file}_slider_gaussian_sigma") st.write("Si l'image contient des traits très fin (de l'odre du pixel)," " augmenter le seuil ci-dessous, de 1 par 1:") dilate_lines_value = st.slider("Dilatation de l'image d'origine: (en pixels)", min_value=0, max_value=5, value=0, step=1,key=f"{uploaded_file}_slider_dilation_image") st.write("Taille d'exportation d'image:") dpi_value = st.number_input("Valeur dpi:", key=f"{uploaded_file}_number_dpi_value", value=200) side_width_value = st.number_input("Taille max de côté cible (cm):", key=f"{uploaded_file}_number_target_value", value=20) new_largest_side_value = int(side_width_value / inch_value * dpi_value) h, w, *_ = image.shape # Resize image ratio = w / h if ratio > 1: width = new_largest_side_value height = int(new_largest_side_value / ratio) else: height = new_largest_side_value width = int(ratio * new_largest_side_value) target_width_value = st.number_input("Largeur cible (cm):", key=f"{uploaded_file}_number_width_value", value=0) target_height_value = st.number_input("Hauteur cible (cm):", key=f"{uploaded_file}_number_height_value", value=0) if target_width_value > 0 and target_height_value == 0: width = int(target_width_value / inch_value * dpi_value) height = int(width / ratio) elif target_height_value > 0 and target_width_value == 0: height = int(target_height_value / inch_value * dpi_value) width = int(height * ratio) elif target_height_value > 0 and target_width_value > 0: st.warning("Vous ne pouvez pas modifier la largeur et la hauteur simultanément.") if threshold > 0: image = (image > threshold)*255 image = image.astype('uint8') if blur_value > 0: image = cv2.GaussianBlur(image, (blur_value, blur_value), blur_value - 1) # Process image cv32f ==> cv32f img_final = pipeline_svg(image, size_value=size_value, level=1, threshold=threshold, kernel_type=kernel_type, dilate_lines_value=dilate_lines_value) col2.image(img_final, caption="Image corrigée", use_column_width='auto') # Check for grayscale tolerance = 10 ratio_of_gray_pixels = int(np.sum((tolerance < image)* (image < 255 - tolerance))/np.size(image)*100) if ratio_of_gray_pixels > 1: col3.warning(f":warning: Le nombre de pixels gris est élevé: {ratio_of_gray_pixels} % > 1%") # Check reconstruction fidelity distance = np.mean((np.array(image) - img_final)**2) if distance > 10: col3.warning(f":warning: Le logo est peut-être trop dégradé (MSE={distance:.2f} > 10).\nVérifier visuellement.") dim = (width, height) # resize image resized_img_final = cv2.resize(img_final, dim, interpolation=cv2.INTER_AREA) resized_image_input = cv2.resize(image_input, dim, interpolation=cv2.INTER_AREA) buf = BytesIO() img_stacked = np.hstack((resized_image_input, resized_img_final)) img_final = Image.fromarray(img_stacked).convert("L") img_final.save(buf, format="PNG") byte_im= buf.getvalue() btn = col3.download_button( label=":inbox_tray: Télécharger l'image", data=byte_im, file_name=f"corrected_{uploaded_file.name}", mime="image/png" )