Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,50 @@
|
|
1 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
-
from pyannote.core import Annotation
|
4 |
-
from pydub import AudioSegment
|
5 |
-
import torchaudio
|
6 |
-
from pyannote.audio import Pipeline
|
7 |
|
8 |
-
diarization_pipe = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1",
|
9 |
-
use_auth_token="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") # change to "your-username/the-name-you-picked"
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
# Load the speech-to-text model (Whisper)
|
14 |
-
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
15 |
-
|
16 |
-
def transcribe_with_diarization(audio_path):
|
17 |
-
# Get speaker segments using the diarization model
|
18 |
-
diarization_result = diarization_pipe(audio_path)
|
19 |
-
|
20 |
-
# Extract speaker segments and transcribe them using Whisper ASR
|
21 |
-
transcripts = []
|
22 |
-
for track, segment,speaker in diarization_result.itertracks(yield_label=True):
|
23 |
-
|
24 |
-
print(segment)
|
25 |
-
print(speaker)
|
26 |
-
|
27 |
-
start_time = track.start
|
28 |
-
end_time = track.end
|
29 |
-
print(start_time)
|
30 |
-
print(end_time)
|
31 |
-
label = segment # Extract the label manually
|
32 |
-
waveform, sample_rate = torchaudio.load(audio_path, normalize=True)
|
33 |
-
start_sample = int(start_time * sample_rate)
|
34 |
-
end_sample = int(end_time * sample_rate)
|
35 |
-
print(waveform)
|
36 |
-
interval_audio = waveform[:,start_sample:end_sample]
|
37 |
-
# Export the interval audio as a temporary WAV file
|
38 |
-
torchaudio.save("interval_audio.wav", interval_audio,sample_rate)
|
39 |
-
transcript = asr_pipe("interval_audio.wav")
|
40 |
-
print(transcript)
|
41 |
-
transcripts.append(transcript)
|
42 |
-
|
43 |
-
# Combine the transcriptions from all speakers
|
44 |
-
text = " ".join(transcripts)
|
45 |
-
return text
|
46 |
|
47 |
iface = gr.Interface(
|
48 |
-
fn=
|
49 |
-
inputs=
|
50 |
-
gr.File(label="Audio File"),
|
51 |
-
gr.Audio(source="microphone", type="filepath", filetype="mp3")
|
52 |
-
],
|
53 |
outputs="text",
|
54 |
-
title="Whisper
|
55 |
-
description="
|
56 |
)
|
57 |
|
58 |
-
iface.launch()
|
|
|
1 |
from transformers import pipeline
|
2 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="ihanif/whisper-medium-urdu")
|
3 |
+
from difflib import SequenceMatcher
|
4 |
+
|
5 |
+
# List of commands
|
6 |
+
commands = [
|
7 |
+
"کمپیوٹر، کھیل کھیلو",
|
8 |
+
"میوزک چلاؤ",
|
9 |
+
"روشنی کم کریں"
|
10 |
+
]
|
11 |
+
replies = [
|
12 |
+
"https://medicobilling.info/urdu.wav",
|
13 |
+
"download.wav",
|
14 |
+
"https://medicobilling.info/urdu.wav"
|
15 |
+
]
|
16 |
+
# Function to find the most similar command
|
17 |
+
def find_most_similar_command(statement, command_list):
|
18 |
+
best_match = None
|
19 |
+
highest_similarity = 0
|
20 |
+
i=0
|
21 |
+
for command in command_list:
|
22 |
+
similarity = SequenceMatcher(None, statement, command).ratio()
|
23 |
+
if similarity > highest_similarity:
|
24 |
+
highest_similarity = similarity
|
25 |
+
best_match = command
|
26 |
+
reply=replies[i]
|
27 |
+
i+=1
|
28 |
+
else:
|
29 |
+
best_match="unknown"
|
30 |
+
reply="unknown.wav"
|
31 |
+
return best_match,reply
|
32 |
+
def transcribe_the_command(audio_path):
|
33 |
+
transcript = asr_pipe(audio_path)["text"]
|
34 |
+
most_similar_command,reply = find_most_similar_command(transcript, commands)
|
35 |
+
print(f"Given Statement: {transcript}")
|
36 |
+
print(f"Most Similar Command: {most_similar_command}\n")
|
37 |
+
return reply
|
38 |
+
# get_text_from_voice("urdu.wav")
|
39 |
import gradio as gr
|
|
|
|
|
|
|
|
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
iface = gr.Interface(
|
43 |
+
fn=transcribe_the_command,
|
44 |
+
inputs=gr.Audio(source="microphone"),
|
|
|
|
|
|
|
45 |
outputs="text",
|
46 |
+
title="Whisper Small Hindi",
|
47 |
+
description="Realtime demo for Hindi speech recognition using a fine-tuned Whisper small model.",
|
48 |
)
|
49 |
|
50 |
+
iface.launch(share="true")
|