poiesisdraw / app.py
multimodalart's picture
Update app.py
1a89b82 verified
raw
history blame
9.19 kB
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
from typing import List
from diffusers.utils import numpy_to_pil
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
import spaces
from previewer.modules import Previewer
import user_history
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
DESCRIPTION = "# Stable Cascade"
DESCRIPTION += "\n<p style=\"text-align: center\">Unofficial demo for <a href='https://huggingface.co/stabilityai/stable-cascade' target='_blank'>Stable Casacade</a>, a new high resolution text-to-image model by Stability AI, built on the Würstchen architecture - <a href='https://huggingface.co/stabilityai/stable-cascade/blob/main/LICENSE' target='_blank'>non-commercial research license</a></p>"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") != "0"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
PREVIEW_IMAGES = True
dtype = torch.bfloat16
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
prior_pipeline = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype)#.to(device)
decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=dtype)#.to(device)
if ENABLE_CPU_OFFLOAD:
prior_pipeline.enable_model_cpu_offload()
decoder_pipeline.enable_model_cpu_offload()
else:
prior_pipeline.to(device)
decoder_pipeline.to(device)
if USE_TORCH_COMPILE:
prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="max-autotune", fullgraph=True)
if PREVIEW_IMAGES:
previewer = Previewer()
previewer_state_dict = torch.load("previewer/previewer_v1_100k.pt", map_location=torch.device('cpu'))["state_dict"]
previewer.load_state_dict(previewer_state_dict)
def callback_prior(i, t, latents):
output = previewer(latents)
output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).float().cpu().numpy())
return output
callback_steps = 1
else:
previewer = None
callback_prior = None
callback_steps = None
else:
prior_pipeline = None
decoder_pipeline = None
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
width: int = 1024,
height: int = 1024,
prior_num_inference_steps: int = 30,
# prior_timesteps: List[float] = None,
prior_guidance_scale: float = 4.0,
decoder_num_inference_steps: int = 12,
# decoder_timesteps: List[float] = None,
decoder_guidance_scale: float = 0.0,
num_images_per_prompt: int = 2,
profile: gr.OAuthProfile | None = None,
) -> PIL.Image.Image:
previewer.eval().requires_grad_(False).to(device).to(dtype)
prior_pipeline.to(device)
decoder_pipeline.to(device)
generator = torch.Generator().manual_seed(seed)
prior_output = prior_pipeline(
prompt=prompt,
height=height,
width=width,
num_inference_steps=prior_num_inference_steps,
timesteps=DEFAULT_STAGE_C_TIMESTEPS,
negative_prompt=negative_prompt,
guidance_scale=prior_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
generator=generator,
callback=callback_prior,
callback_steps=callback_steps
)
if PREVIEW_IMAGES:
for _ in range(len(DEFAULT_STAGE_C_TIMESTEPS)):
r = next(prior_output)
if isinstance(r, list):
yield r[0]
prior_output = r
decoder_output = decoder_pipeline(
image_embeddings=prior_output.image_embeddings,
prompt=prompt,
num_inference_steps=decoder_num_inference_steps,
# timesteps=decoder_timesteps,
guidance_scale=decoder_guidance_scale,
negative_prompt=negative_prompt,
generator=generator,
output_type="pil",
).images
#Save images
for image in decoder_output:
user_history.save_image(
profile=profile,
image=image,
label=prompt,
metadata={
"negative_prompt": negative_prompt,
"seed": seed,
"width": width,
"height": height,
"prior_guidance_scale": prior_guidance_scale,
"decoder_num_inference_steps": decoder_num_inference_steps,
"decoder_guidance_scale": decoder_guidance_scale,
"num_images_per_prompt": num_images_per_prompt,
},
)
yield decoder_output[0]
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A mecha robot in a favela by Tarsila do Amaral",
"The sprirt of a Tamagotchi wandering in the city of Los Angeles",
"A delicious feijoada ramen dish"
]
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a Negative Prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=1024,
maximum=MAX_IMAGE_SIZE,
step=512,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=1024,
maximum=MAX_IMAGE_SIZE,
step=512,
value=1024,
)
num_images_per_prompt = gr.Slider(
label="Number of Images",
minimum=1,
maximum=2,
step=1,
value=1,
)
with gr.Row():
prior_guidance_scale = gr.Slider(
label="Prior Guidance Scale",
minimum=0,
maximum=20,
step=0.1,
value=4.0,
)
prior_num_inference_steps = gr.Slider(
label="Prior Inference Steps",
minimum=10,
maximum=30,
step=1,
value=20,
)
decoder_guidance_scale = gr.Slider(
label="Decoder Guidance Scale",
minimum=0,
maximum=0,
step=0.1,
value=0.0,
)
decoder_num_inference_steps = gr.Slider(
label="Decoder Inference Steps",
minimum=4,
maximum=12,
step=1,
value=10,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
inputs = [
prompt,
negative_prompt,
seed,
width,
height,
prior_num_inference_steps,
# prior_timesteps,
prior_guidance_scale,
decoder_num_inference_steps,
# decoder_timesteps,
decoder_guidance_scale,
num_images_per_prompt,
]
gr.on(
triggers=[prompt.submit, negative_prompt.submit, run_button.click],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name="run",
)
with gr.Blocks(css="style.css") as demo_with_history:
with gr.Tab("App"):
demo.render()
with gr.Tab("Past generations"):
user_history.render()
if __name__ == "__main__":
demo_with_history.queue(max_size=20).launch()