Hydrc68 commited on
Commit
82a839e
1 Parent(s): 28c6559

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +370 -1
app.py CHANGED
@@ -1,3 +1,372 @@
 
1
  import gradio as gr
 
 
 
 
 
 
 
2
 
3
- gr.Interface.load("models/nitrosocke/Arcane-Diffusion").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
2
  import gradio as gr
3
+ import torch
4
+ from PIL import Image
5
+ import utils
6
+ import datetime
7
+ import time
8
+ import psutil
9
+ import random
10
 
11
+ start_time = time.time()
12
+ is_colab = utils.is_google_colab()
13
+ state = None
14
+ current_steps = 25
15
+
16
+ class Model:
17
+ def __init__(self, name, path="", prefix=""):
18
+ self.name = name
19
+ self.path = path
20
+ self.prefix = prefix
21
+ self.pipe_t2i = None
22
+ self.pipe_i2i = None
23
+
24
+ models = [
25
+ Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
26
+ Model("Dreamlike Diffusion 1.0", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlikeart "),
27
+ Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
28
+ Model("Anything V3", "Linaqruf/anything-v3.0", ""),
29
+ Model("Anything V4", "andite/anything-v4.0", ""),
30
+ Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "),
31
+ Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style "),
32
+ Model("Loving Vincent (Van Gogh)", "dallinmackay/Van-Gogh-diffusion", "lvngvncnt "),
33
+ Model("Wavyfusion", "wavymulder/wavyfusion", "wa-vy style "),
34
+ Model("Analog Diffusion", "wavymulder/Analog-Diffusion", "analog style "),
35
+ Model("Redshift renderer (Cinema4D)", "nitrosocke/redshift-diffusion", "redshift style "),
36
+ Model("Midjourney v4 style", "prompthero/midjourney-v4-diffusion", "mdjrny-v4 style "),
37
+ Model("Waifu", "hakurei/waifu-diffusion"),
38
+ Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
39
+ Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
40
+ Model("TrinArt v2", "naclbit/trinart_stable_diffusion_v2"),
41
+ Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
42
+ Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "),
43
+ Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy "),
44
+ Model("Pokémon", "lambdalabs/sd-pokemon-diffusers"),
45
+ Model("Pony Diffusion", "AstraliteHeart/pony-diffusion"),
46
+ Model("Robo Diffusion", "nousr/robo-diffusion"),
47
+ Model("Epic Diffusion", "johnslegers/epic-diffusion"),
48
+ Model("Space Machine", "rabidgremlin/sd-db-epic-space-machine", "EpicSpaceMachine"),
49
+ Model("Spacecraft", "rabidgremlin/sd-db-epic-space-machine, Guizmus/Tardisfusion", "EpicSpaceMachine, Tardis Box style"),
50
+ Model("TARDIS", "Guizmus/Tardisfusion", "Tardis Box style"),
51
+ Model("Modern Era TARDIS Interior", "Guizmus/Tardisfusion", "Modern Tardis style"),
52
+ Model("Classic Era TARDIS Interior", "Guizmus/Tardisfusion", "Classic Tardis style"),
53
+ Model("Spacecraft Interior", "Guizmus/Tardisfusion, rabidgremlin/sd-db-epic-space-machine", "Classic Tardis style, Modern Tardis style, EpicSpaceMachine"),
54
+ Model("CLIP", "EleutherAI/clip-guided-diffusion", "CLIP"),
55
+ Model("Genshin Waifu", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, katakana/2D-Mix, Guizmus/AnimeChanStyle", "Female, female, Woman, woman, Girl, girl"),
56
+ Model("Genshin", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, katakana/2D-Mix, Guizmus/AnimeChanStyle", ""),
57
+ Model("Waifu", "hakurei/waifu-diffusion, technillogue/waifu-diffusion, Guizmus/AnimeChanStyle, katakana/2D-Mix", ""),
58
+ Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
59
+ Model("Test", "AdamOswald1/Idk", ""),
60
+ Model("Test2", "AdamOswald1/Tester", ""),
61
+ Model("Anime", "Guizmus/AnimeChanStyle, katakana/2D-Mix", ""),
62
+ Model("Beeple", "riccardogiorato/beeple-diffusion", "beeple style "),
63
+ Model("Avatar", "riccardogiorato/avatar-diffusion", "avatartwow style "),
64
+ Model("Poolsuite", "prompthero/poolsuite", "poolsuite style ")
65
+ ]
66
+
67
+ custom_model = None
68
+ if is_colab:
69
+ models.insert(0, Model("Custom model"))
70
+ custom_model = models[0]
71
+
72
+ last_mode = "txt2img"
73
+ current_model = models[1] if is_colab else models[0]
74
+ current_model_path = current_model.path
75
+
76
+ if is_colab:
77
+ pipe = StableDiffusionPipeline.from_pretrained(
78
+ current_model.path,
79
+ torch_dtype=torch.float16,
80
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
81
+ safety_checker=lambda images, clip_input: (images, False)
82
+ )
83
+
84
+ else:
85
+ pipe = StableDiffusionPipeline.from_pretrained(
86
+ current_model.path,
87
+ torch_dtype=torch.float16,
88
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
89
+ )
90
+
91
+ if torch.cuda.is_available():
92
+ pipe = pipe.to("cuda")
93
+ pipe.enable_xformers_memory_efficient_attention()
94
+
95
+ device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
96
+
97
+ def error_str(error, title="Error"):
98
+ return f"""#### {title}
99
+ {error}""" if error else ""
100
+
101
+ def update_state(new_state):
102
+ global state
103
+ state = new_state
104
+
105
+ def update_state_info(old_state):
106
+ if state and state != old_state:
107
+ return gr.update(value=state)
108
+
109
+ def custom_model_changed(path):
110
+ models[0].path = path
111
+ global current_model
112
+ current_model = models[0]
113
+
114
+ def on_model_change(model_name):
115
+
116
+ prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
117
+
118
+ return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
119
+
120
+ def on_steps_change(steps):
121
+ global current_steps
122
+ current_steps = steps
123
+
124
+ def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
125
+ update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
126
+
127
+ def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
128
+
129
+ update_state(" ")
130
+
131
+ print(psutil.virtual_memory()) # print memory usage
132
+
133
+ global current_model
134
+ for model in models:
135
+ if model.name == model_name:
136
+ current_model = model
137
+ model_path = current_model.path
138
+
139
+ # generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
140
+ if seed == 0:
141
+ seed = random.randint(0, 2147483647)
142
+
143
+ if torch.cuda.is_available():
144
+ generator = torch.Generator('cuda').manual_seed(seed)
145
+ else:
146
+ generator = torch.Generator().manual_seed(seed)
147
+
148
+ try:
149
+ if img is not None:
150
+ return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
151
+ else:
152
+ return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
153
+ except Exception as e:
154
+ return None, error_str(e)
155
+
156
+ def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
157
+
158
+ print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
159
+
160
+ global last_mode
161
+ global pipe
162
+ global current_model_path
163
+ if model_path != current_model_path or last_mode != "txt2img":
164
+ current_model_path = model_path
165
+
166
+ update_state(f"Loading {current_model.name} text-to-image model...")
167
+
168
+ if is_colab or current_model == custom_model:
169
+ pipe = StableDiffusionPipeline.from_pretrained(
170
+ current_model_path,
171
+ torch_dtype=torch.float16,
172
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
173
+ safety_checker=lambda images, clip_input: (images, False)
174
+ )
175
+ else:
176
+ pipe = StableDiffusionPipeline.from_pretrained(
177
+ current_model_path,
178
+ torch_dtype=torch.float16,
179
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
180
+ )
181
+ # pipe = pipe.to("cpu")
182
+ # pipe = current_model.pipe_t2i
183
+
184
+ if torch.cuda.is_available():
185
+ pipe = pipe.to("cuda")
186
+ pipe.enable_xformers_memory_efficient_attention()
187
+ last_mode = "txt2img"
188
+
189
+ prompt = current_model.prefix + prompt
190
+ result = pipe(
191
+ prompt,
192
+ negative_prompt = neg_prompt,
193
+ num_images_per_prompt=n_images,
194
+ num_inference_steps = int(steps),
195
+ guidance_scale = guidance,
196
+ width = width,
197
+ height = height,
198
+ generator = generator,
199
+ callback=pipe_callback)
200
+
201
+ # update_state(f"Done. Seed: {seed}")
202
+
203
+ return replace_nsfw_images(result)
204
+
205
+ def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
206
+
207
+ print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
208
+
209
+ global last_mode
210
+ global pipe
211
+ global current_model_path
212
+ if model_path != current_model_path or last_mode != "img2img":
213
+ current_model_path = model_path
214
+
215
+ update_state(f"Loading {current_model.name} image-to-image model...")
216
+
217
+ if is_colab or current_model == custom_model:
218
+ pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
219
+ current_model_path,
220
+ torch_dtype=torch.float16,
221
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
222
+ safety_checker=lambda images, clip_input: (images, False)
223
+ )
224
+ else:
225
+ pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
226
+ current_model_path,
227
+ torch_dtype=torch.float16,
228
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
229
+ )
230
+ # pipe = pipe.to("cpu")
231
+ # pipe = current_model.pipe_i2i
232
+
233
+ if torch.cuda.is_available():
234
+ pipe = pipe.to("cuda")
235
+ pipe.enable_xformers_memory_efficient_attention()
236
+ last_mode = "img2img"
237
+
238
+ prompt = current_model.prefix + prompt
239
+ ratio = min(height / img.height, width / img.width)
240
+ img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
241
+ result = pipe(
242
+ prompt,
243
+ negative_prompt = neg_prompt,
244
+ num_images_per_prompt=n_images,
245
+ image = img,
246
+ num_inference_steps = int(steps),
247
+ strength = strength,
248
+ guidance_scale = guidance,
249
+ # width = width,
250
+ # height = height,
251
+ generator = generator,
252
+ callback=pipe_callback)
253
+
254
+ # update_state(f"Done. Seed: {seed}")
255
+
256
+ return replace_nsfw_images(result)
257
+
258
+ def replace_nsfw_images(results):
259
+
260
+ if is_colab:
261
+ return results.images
262
+
263
+ for i in range(len(results.images)):
264
+ if results.nsfw_content_detected[i]:
265
+ results.images[i] = Image.open("nsfw.png")
266
+ return results.images
267
+
268
+ # css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
269
+ # """
270
+ with gr.Blocks(css="style.css") as demo:
271
+ gr.HTML(
272
+ f"""
273
+ <div class="finetuned-diffusion-div">
274
+ <div>
275
+ <h1>Finetuned Diffusion</h1>
276
+ </div>
277
+ <p>
278
+ BROKEN, USE COLLAB VERSION INSTEAD! ALSO ADD ", 'safety_checker=None'" TO YOUR PROMPT!
279
+ </p>
280
+ <p>
281
+ Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
282
+ <a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/mo-di-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/dallinmackay/Van-Gogh-diffusion">Loving Vincent (Van Gogh)</a>, <a href="https://huggingface.co/nitrosocke/redshift-diffusion">Redshift renderer (Cinema4D)</a>, <a href="https://huggingface.co/prompthero/midjourney-v4-diffusion">Midjourney v4 style</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a>, <a href="https://huggingface.co/Fictiverse/Stable_Diffusion_BalloonArt_Model">Balloon Art</a> + in colab notebook you can load any other Diffusers 🧨 SD model hosted on HuggingFace 🤗.
283
+ </p>
284
+ <p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/gist/AdamOswald/fe67300b1b3638d610038cde5e145b0b/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
285
+ Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
286
+ </p>
287
+ <p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
288
+ <a style="display:inline-block" href="https://huggingface.co/spaces/anzorq/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
289
+ </div>
290
+ """
291
+ )
292
+ with gr.Row():
293
+
294
+ with gr.Column(scale=55):
295
+ with gr.Group():
296
+ model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
297
+ with gr.Box(visible=False) as custom_model_group:
298
+ custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
299
+ gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
300
+
301
+ with gr.Row():
302
+ prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
303
+ generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
304
+
305
+
306
+ # image_out = gr.Image(height=512)
307
+ gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
308
+
309
+ state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
310
+ error_output = gr.Markdown()
311
+
312
+ with gr.Column(scale=45):
313
+ with gr.Tab("Options"):
314
+ with gr.Group():
315
+ neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
316
+
317
+ n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=8, step=1)
318
+
319
+ with gr.Row():
320
+ guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
321
+ steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=300, step=1)
322
+
323
+ with gr.Row():
324
+ width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
325
+ height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
326
+
327
+ seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
328
+
329
+ with gr.Tab("Image to image"):
330
+ with gr.Group():
331
+ image = gr.Image(label="Image", height=256, tool="editor", type="pil")
332
+ strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
333
+
334
+ if is_colab:
335
+ model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
336
+ custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
337
+ # n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
338
+ steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
339
+
340
+ inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
341
+ outputs = [gallery, error_output]
342
+ prompt.submit(inference, inputs=inputs, outputs=outputs)
343
+ generate.click(inference, inputs=inputs, outputs=outputs)
344
+
345
+ ex = gr.Examples([
346
+ [models[7].name, "tiny cute and adorable kitten adventurer dressed in a warm overcoat with survival gear on a winters day", 7.5, 25],
347
+ [models[4].name, "portrait of dwayne johnson", 7.0, 35],
348
+ [models[5].name, "portrait of a beautiful alyx vance half life", 10, 25],
349
+ [models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 30],
350
+ [models[5].name, "fantasy portrait painting, digital art", 4.0, 20],
351
+ ], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False)
352
+
353
+ gr.HTML("""
354
+ <div style="border-top: 1px solid #303030;">
355
+ <br>
356
+ <p>Models by <a href="https://huggingface.co/nitrosocke">@nitrosocke</a>, <a href="https://twitter.com/haruu1367">@haruu1367</a>, <a href="https://twitter.com/DGSpitzer">@Helixngc7293</a>, <a href="https://twitter.com/dal_mack">@dal_mack</a>, <a href="https://twitter.com/prompthero">@prompthero</a> and others. ❤️</p>
357
+ <p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
358
+ <p>Space by:<br>
359
+ <a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br>
360
+ <a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br><br>
361
+ <a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 45px !important;width: 162px !important;" ></a><br><br>
362
+ <p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion" alt="visitors"></p>
363
+ </div>
364
+ """)
365
+
366
+ demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
367
+
368
+ print(f"Space built in {time.time() - start_time:.2f} seconds")
369
+
370
+ # if not is_colab:
371
+ demo.queue(concurrency_count=1)
372
+ demo.launch(debug=True, share=is_colab)