File size: 9,495 Bytes
39f384e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import math
import torch
from rvc.lib.algorithm.commons import convert_pad_shape


class MultiHeadAttention(torch.nn.Module):
    """
    Multi-head attention module with optional relative positional encoding and proximal bias.

    Args:
        channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        n_heads (int): Number of attention heads.
        p_dropout (float, optional): Dropout probability. Defaults to 0.0.
        window_size (int, optional): Window size for relative positional encoding. Defaults to None.
        heads_share (bool, optional): Whether to share relative positional embeddings across heads. Defaults to True.
        block_length (int, optional): Block length for local attention. Defaults to None.
        proximal_bias (bool, optional): Whether to use proximal bias in self-attention. Defaults to False.
        proximal_init (bool, optional): Whether to initialize the key projection weights the same as query projection weights. Defaults to False.
    """

    def __init__(
        self,
        channels: int,
        out_channels: int,
        n_heads: int,
        p_dropout: float = 0.0,
        window_size: int = None,
        heads_share: bool = True,
        block_length: int = None,
        proximal_bias: bool = False,
        proximal_init: bool = False,
    ):
        super().__init__()
        assert (
            channels % n_heads == 0
        ), "Channels must be divisible by the number of heads."

        self.channels = channels
        self.out_channels = out_channels
        self.n_heads = n_heads
        self.k_channels = channels // n_heads
        self.window_size = window_size
        self.block_length = block_length
        self.proximal_bias = proximal_bias

        # Define projections
        self.conv_q = torch.nn.Conv1d(channels, channels, 1)
        self.conv_k = torch.nn.Conv1d(channels, channels, 1)
        self.conv_v = torch.nn.Conv1d(channels, channels, 1)
        self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)

        self.drop = torch.nn.Dropout(p_dropout)

        # Relative positional encodings
        if window_size:
            n_heads_rel = 1 if heads_share else n_heads
            rel_stddev = self.k_channels**-0.5
            self.emb_rel_k = torch.nn.Parameter(
                torch.randn(n_heads_rel, 2 * window_size + 1, self.k_channels)
                * rel_stddev
            )
            self.emb_rel_v = torch.nn.Parameter(
                torch.randn(n_heads_rel, 2 * window_size + 1, self.k_channels)
                * rel_stddev
            )

        # Initialize weights
        torch.nn.init.xavier_uniform_(self.conv_q.weight)
        torch.nn.init.xavier_uniform_(self.conv_k.weight)
        torch.nn.init.xavier_uniform_(self.conv_v.weight)
        torch.nn.init.xavier_uniform_(self.conv_o.weight)

        if proximal_init:
            with torch.no_grad():
                self.conv_k.weight.copy_(self.conv_q.weight)
                self.conv_k.bias.copy_(self.conv_q.bias)

    def forward(self, x, c, attn_mask=None):
        # Compute query, key, value projections
        q, k, v = self.conv_q(x), self.conv_k(c), self.conv_v(c)

        # Compute attention
        x, self.attn = self.attention(q, k, v, mask=attn_mask)

        # Final output projection
        return self.conv_o(x)

    def attention(self, query, key, value, mask=None):
        # Reshape and compute scaled dot-product attention
        b, d, t_s, t_t = (*key.size(), query.size(2))
        query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
        key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
        value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)

        scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))

        if self.window_size:
            assert t_s == t_t, "Relative attention only supports self-attention."
            scores += self._compute_relative_scores(query, t_s)

        if self.proximal_bias:
            assert t_s == t_t, "Proximal bias only supports self-attention."
            scores += self._attention_bias_proximal(t_s).to(scores.device, scores.dtype)

        if mask is not None:
            scores = scores.masked_fill(mask == 0, -1e4)
            if self.block_length:
                block_mask = (
                    torch.ones_like(scores)
                    .triu(-self.block_length)
                    .tril(self.block_length)
                )
                scores = scores.masked_fill(block_mask == 0, -1e4)

        # Apply softmax and dropout
        p_attn = self.drop(torch.nn.functional.softmax(scores, dim=-1))

        # Compute attention output
        output = torch.matmul(p_attn, value)

        if self.window_size:
            output += self._apply_relative_values(p_attn, t_s)

        return output.transpose(2, 3).contiguous().view(b, d, t_t), p_attn

    def _compute_relative_scores(self, query, length):
        rel_emb = self._get_relative_embeddings(self.emb_rel_k, length)
        rel_logits = self._matmul_with_relative_keys(
            query / math.sqrt(self.k_channels), rel_emb
        )
        return self._relative_position_to_absolute_position(rel_logits)

    def _apply_relative_values(self, p_attn, length):
        rel_weights = self._absolute_position_to_relative_position(p_attn)
        rel_emb = self._get_relative_embeddings(self.emb_rel_v, length)
        return self._matmul_with_relative_values(rel_weights, rel_emb)

    # Helper methods
    def _matmul_with_relative_values(self, x, y):
        return torch.matmul(x, y.unsqueeze(0))

    def _matmul_with_relative_keys(self, x, y):
        return torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))

    def _get_relative_embeddings(self, embeddings, length):
        pad_length = max(length - (self.window_size + 1), 0)
        start = max((self.window_size + 1) - length, 0)
        end = start + 2 * length - 1

        if pad_length > 0:
            embeddings = torch.nn.functional.pad(
                embeddings,
                convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
            )
        return embeddings[:, start:end]

    def _relative_position_to_absolute_position(self, x):
        batch, heads, length, _ = x.size()
        x = torch.nn.functional.pad(
            x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])
        )
        x_flat = x.view(batch, heads, length * 2 * length)
        x_flat = torch.nn.functional.pad(
            x_flat, convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
        )
        return x_flat.view(batch, heads, length + 1, 2 * length - 1)[
            :, :, :length, length - 1 :
        ]

    def _absolute_position_to_relative_position(self, x):
        batch, heads, length, _ = x.size()
        x = torch.nn.functional.pad(
            x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
        )
        x_flat = x.view(batch, heads, length**2 + length * (length - 1))
        x_flat = torch.nn.functional.pad(
            x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]])
        )
        return x_flat.view(batch, heads, length, 2 * length)[:, :, :, 1:]

    def _attention_bias_proximal(self, length):
        r = torch.arange(length, dtype=torch.float32)
        diff = r.unsqueeze(0) - r.unsqueeze(1)
        return -torch.log1p(torch.abs(diff)).unsqueeze(0).unsqueeze(0)


class FFN(torch.nn.Module):
    """
    Feed-forward network module.

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        filter_channels (int): Number of filter channels in the convolution layers.
        kernel_size (int): Kernel size of the convolution layers.
        p_dropout (float, optional): Dropout probability. Defaults to 0.0.
        activation (str, optional): Activation function to use. Defaults to None.
        causal (bool, optional): Whether to use causal padding in the convolution layers. Defaults to False.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        filter_channels: int,
        kernel_size: int,
        p_dropout: float = 0.0,
        activation: str = None,
        causal: bool = False,
    ):
        super().__init__()
        self.padding_fn = self._causal_padding if causal else self._same_padding

        self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size)
        self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size)
        self.drop = torch.nn.Dropout(p_dropout)

        self.activation = activation

    def forward(self, x, x_mask):
        x = self.conv_1(self.padding_fn(x * x_mask))
        x = self._apply_activation(x)
        x = self.drop(x)
        x = self.conv_2(self.padding_fn(x * x_mask))
        return x * x_mask

    def _apply_activation(self, x):
        if self.activation == "gelu":
            return x * torch.sigmoid(1.702 * x)
        return torch.relu(x)

    def _causal_padding(self, x):
        pad_l, pad_r = self.conv_1.kernel_size[0] - 1, 0
        return torch.nn.functional.pad(
            x, convert_pad_shape([[0, 0], [0, 0], [pad_l, pad_r]])
        )

    def _same_padding(self, x):
        pad = (self.conv_1.kernel_size[0] - 1) // 2
        return torch.nn.functional.pad(
            x, convert_pad_shape([[0, 0], [0, 0], [pad, pad]])
        )