Applio / rvc /train /extract /extract_f0_print.py
Aitron Emper
Upload 175 files
55adc26 verified
raw
history blame
7.67 kB
import os
import sys
import numpy as np
import pyworld
import torchcrepe
import torch
import parselmouth
import tqdm
from multiprocessing import Process, cpu_count
current_directory = os.getcwd()
sys.path.append(current_directory)
from rvc.lib.utils import load_audio
exp_dir = sys.argv[1]
f0_method = sys.argv[2]
num_processes = cpu_count()
try:
hop_length = int(sys.argv[3])
except ValueError:
hop_length = 128
DoFormant = False
Quefrency = 1.0
Timbre = 1.0
class FeatureInput:
def __init__(self, sample_rate=16000, hop_size=160):
self.fs = sample_rate
self.hop = hop_size
self.f0_method_dict = self.get_f0_method_dict()
self.f0_bin = 256
self.f0_max = 1100.0
self.f0_min = 50.0
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
def mncrepe(self, method, x, p_len, hop_length):
f0 = None
torch_device_index = 0
torch_device = (
torch.device(f"cuda:{torch_device_index % torch.cuda.device_count()}")
if torch.cuda.is_available()
else (
torch.device("mps")
if torch.backends.mps.is_available()
else torch.device("cpu")
)
)
audio = torch.from_numpy(x.astype(np.float32)).to(torch_device, copy=True)
audio /= torch.quantile(torch.abs(audio), 0.999)
audio = torch.unsqueeze(audio, dim=0)
if audio.ndim == 2 and audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True).detach()
audio = audio.detach()
if method == "crepe":
pitch = torchcrepe.predict(
audio,
self.fs,
hop_length,
self.f0_min,
self.f0_max,
"full",
batch_size=hop_length * 2,
device=torch_device,
pad=True,
)
p_len = p_len or x.shape[0] // hop_length
source = np.array(pitch.squeeze(0).cpu().float().numpy())
source[source < 0.001] = np.nan
target = np.interp(
np.arange(0, len(source) * p_len, len(source)) / p_len,
np.arange(0, len(source)),
source,
)
f0 = np.nan_to_num(target)
return f0
def get_pm(self, x, p_len):
f0 = (
parselmouth.Sound(x, self.fs)
.to_pitch_ac(
time_step=160 / 16000,
voicing_threshold=0.6,
pitch_floor=self.f0_min,
pitch_ceiling=self.f0_max,
)
.selected_array["frequency"]
)
return np.pad(
f0,
[
[
max(0, (p_len - len(f0) + 1) // 2),
max(0, p_len - len(f0) - (p_len - len(f0) + 1) // 2),
]
],
mode="constant",
)
def get_harvest(self, x):
f0_spectral = pyworld.harvest(
x.astype(np.double),
fs=self.fs,
f0_ceil=self.f0_max,
f0_floor=self.f0_min,
frame_period=1000 * self.hop / self.fs,
)
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.fs)
def get_dio(self, x):
f0_spectral = pyworld.dio(
x.astype(np.double),
fs=self.fs,
f0_ceil=self.f0_max,
f0_floor=self.f0_min,
frame_period=1000 * self.hop / self.fs,
)
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.fs)
def get_rmvpe(self, x):
if not hasattr(self, "model_rmvpe"):
from rvc.lib.rmvpe import RMVPE
self.model_rmvpe = RMVPE("rmvpe.pt", is_half=False, device="cpu")
return self.model_rmvpe.infer_from_audio(x, thred=0.03)
def get_f0_method_dict(self):
return {
"pm": self.get_pm,
"harvest": self.get_harvest,
"dio": self.get_dio,
"rmvpe": self.get_rmvpe,
}
def compute_f0(self, path, f0_method, hop_length):
x = load_audio(path, self.fs)
p_len = x.shape[0] // self.hop
if f0_method in self.f0_method_dict:
f0 = (
self.f0_method_dict[f0_method](x, p_len)
if f0_method == "pm"
else self.f0_method_dict[f0_method](x)
)
elif f0_method == "crepe":
f0 = self.mncrepe(f0_method, x, p_len, hop_length)
return f0
def coarse_f0(self, f0):
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
self.f0_bin - 2
) / (self.f0_mel_max - self.f0_mel_min) + 1
# use 0 or 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
f0_coarse = np.rint(f0_mel).astype(int)
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
f0_coarse.max(),
f0_coarse.min(),
)
return f0_coarse
def process_paths(self, paths, f0_method, hop_length, thread_n):
if len(paths) == 0:
print("There are no paths to process.")
return
with tqdm.tqdm(total=len(paths), leave=True, position=thread_n) as pbar:
description = f"Thread {thread_n} | Hop-Length {hop_length}"
pbar.set_description(description)
for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths):
try:
if os.path.exists(opt_path1 + ".npy") and os.path.exists(
opt_path2 + ".npy"
):
pbar.update(1)
continue
feature_pit = self.compute_f0(inp_path, f0_method, hop_length)
np.save(
opt_path2,
feature_pit,
allow_pickle=False,
) # nsf
coarse_pit = self.coarse_f0(feature_pit)
np.save(
opt_path1,
coarse_pit,
allow_pickle=False,
) # ori
pbar.update(1)
except Exception as error:
print(f"f0fail-{idx}-{inp_path}-{error}")
if __name__ == "__main__":
feature_input = FeatureInput()
paths = []
input_root = f"{exp_dir}/1_16k_wavs"
output_root1 = f"{exp_dir}/2a_f0"
output_root2 = f"{exp_dir}/2b-f0nsf"
os.makedirs(output_root1, exist_ok=True)
os.makedirs(output_root2, exist_ok=True)
for name in sorted(list(os.listdir(input_root))):
input_path = f"{input_root}/{name}"
if "spec" in input_path:
continue
output_path1 = f"{output_root1}/{name}"
output_path2 = f"{output_root2}/{name}"
paths.append([input_path, output_path1, output_path2])
processes = []
print("Using f0 method: " + f0_method)
for i in range(num_processes):
p = Process(
target=feature_input.process_paths,
args=(paths[i::num_processes], f0_method, hop_length, i),
)
processes.append(p)
p.start()
for i in range(num_processes):
processes[i].join()