import torch from rvc.lib.algorithm.commons import fused_add_tanh_sigmoid_multiply class WaveNet(torch.nn.Module): """WaveNet residual blocks as used in WaveGlow. Args: hidden_channels (int): Number of hidden channels. kernel_size (int): Size of the convolutional kernel. dilation_rate (int): Dilation rate of the convolution. n_layers (int): Number of convolutional layers. gin_channels (int, optional): Number of conditioning channels. Defaults to 0. p_dropout (float, optional): Dropout probability. Defaults to 0. """ def __init__( self, hidden_channels: int, kernel_size: int, dilation_rate, n_layers: int, gin_channels: int = 0, p_dropout: int = 0, ): super().__init__() assert kernel_size % 2 == 1, "Kernel size must be odd for proper padding." self.hidden_channels = hidden_channels self.kernel_size = (kernel_size,) self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.n_channels_tensor = torch.IntTensor([hidden_channels]) # Static tensor self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.drop = torch.nn.Dropout(p_dropout) # Conditional layer for global conditioning if gin_channels: self.cond_layer = torch.nn.utils.parametrizations.weight_norm( torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1), name="weight", ) # Precompute dilations and paddings dilations = [dilation_rate**i for i in range(n_layers)] paddings = [(kernel_size * d - d) // 2 for d in dilations] # Initialize layers for i in range(n_layers): self.in_layers.append( torch.nn.utils.parametrizations.weight_norm( torch.nn.Conv1d( hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilations[i], padding=paddings[i], ), name="weight", ) ) res_skip_channels = ( hidden_channels if i == n_layers - 1 else 2 * hidden_channels ) self.res_skip_layers.append( torch.nn.utils.parametrizations.weight_norm( torch.nn.Conv1d(hidden_channels, res_skip_channels, 1), name="weight", ) ) def forward(self, x, x_mask, g=None): """Forward pass. Args: x (torch.Tensor): Input tensor (batch_size, hidden_channels, time_steps). x_mask (torch.Tensor): Mask tensor (batch_size, 1, time_steps). g (torch.Tensor, optional): Conditioning tensor (batch_size, gin_channels, time_steps). """ output = x.clone().zero_() # Apply conditional layer if global conditioning is provided g = self.cond_layer(g) if g is not None else None for i in range(self.n_layers): x_in = self.in_layers[i](x) g_l = ( g[ :, i * 2 * self.hidden_channels : (i + 1) * 2 * self.hidden_channels, :, ] if g is not None else 0 ) # Activation with fused Tanh-Sigmoid acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, self.n_channels_tensor) acts = self.drop(acts) # Residual and skip connections res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: res_acts = res_skip_acts[:, : self.hidden_channels, :] x = (x + res_acts) * x_mask output = output + res_skip_acts[:, self.hidden_channels :, :] else: output = output + res_skip_acts return output * x_mask def remove_weight_norm(self): """Remove weight normalization from the module.""" if self.gin_channels: torch.nn.utils.remove_weight_norm(self.cond_layer) for layer in self.in_layers: torch.nn.utils.remove_weight_norm(layer) for layer in self.res_skip_layers: torch.nn.utils.remove_weight_norm(layer)