import torch from torch.nn.utils.parametrizations import spectral_norm, weight_norm from rvc.lib.algorithm.commons import get_padding from rvc.lib.algorithm.residuals import LRELU_SLOPE class MultiPeriodDiscriminator(torch.nn.Module): """ Multi-period discriminator. This class implements a multi-period discriminator, which is used to discriminate between real and fake audio signals. The discriminator is composed of a series of convolutional layers that are applied to the input signal at different periods. Args: periods (str): Periods of the discriminator. V1 = [2, 3, 5, 7, 11, 17], V2 = [2, 3, 5, 7, 11, 17, 23, 37]. use_spectral_norm (bool): Whether to use spectral normalization. Defaults to False. """ def __init__(self, version: str, use_spectral_norm: bool = False): super(MultiPeriodDiscriminator, self).__init__() periods = ( [2, 3, 5, 7, 11, 17] if version == "v1" else [2, 3, 5, 7, 11, 17, 23, 37] ) self.discriminators = torch.nn.ModuleList( [DiscriminatorS(use_spectral_norm=use_spectral_norm)] + [DiscriminatorP(p, use_spectral_norm=use_spectral_norm) for p in periods] ) def forward(self, y, y_hat): """ Forward pass of the multi-period discriminator. Args: y (torch.Tensor): Real audio signal. y_hat (torch.Tensor): Fake audio signal. """ y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], [] for d in self.discriminators: y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) y_d_gs.append(y_d_g) fmap_rs.append(fmap_r) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorS(torch.nn.Module): """ Discriminator for the short-term component. This class implements a discriminator for the short-term component of the audio signal. The discriminator is composed of a series of convolutional layers that are applied to the input signal. """ def __init__(self, use_spectral_norm: bool = False): super(DiscriminatorS, self).__init__() norm_f = spectral_norm if use_spectral_norm else weight_norm self.convs = torch.nn.ModuleList( [ norm_f(torch.nn.Conv1d(1, 16, 15, 1, padding=7)), norm_f(torch.nn.Conv1d(16, 64, 41, 4, groups=4, padding=20)), norm_f(torch.nn.Conv1d(64, 256, 41, 4, groups=16, padding=20)), norm_f(torch.nn.Conv1d(256, 1024, 41, 4, groups=64, padding=20)), norm_f(torch.nn.Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), norm_f(torch.nn.Conv1d(1024, 1024, 5, 1, padding=2)), ] ) self.conv_post = norm_f(torch.nn.Conv1d(1024, 1, 3, 1, padding=1)) self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE) def forward(self, x): """ Forward pass of the discriminator. Args: x (torch.Tensor): Input audio signal. """ fmap = [] for conv in self.convs: x = self.lrelu(conv(x)) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class DiscriminatorP(torch.nn.Module): """ Discriminator for the long-term component. This class implements a discriminator for the long-term component of the audio signal. The discriminator is composed of a series of convolutional layers that are applied to the input signal at a given period. Args: period (int): Period of the discriminator. kernel_size (int): Kernel size of the convolutional layers. Defaults to 5. stride (int): Stride of the convolutional layers. Defaults to 3. use_spectral_norm (bool): Whether to use spectral normalization. Defaults to False. """ def __init__( self, period: int, kernel_size: int = 5, stride: int = 3, use_spectral_norm: bool = False, ): super(DiscriminatorP, self).__init__() self.period = period norm_f = spectral_norm if use_spectral_norm else weight_norm in_channels = [1, 32, 128, 512, 1024] out_channels = [32, 128, 512, 1024, 1024] self.convs = torch.nn.ModuleList( [ norm_f( torch.nn.Conv2d( in_ch, out_ch, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0), ) ) for in_ch, out_ch in zip(in_channels, out_channels) ] ) self.conv_post = norm_f(torch.nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE) def forward(self, x): """ Forward pass of the discriminator. Args: x (torch.Tensor): Input audio signal. """ fmap = [] b, c, t = x.shape if t % self.period != 0: n_pad = self.period - (t % self.period) x = torch.nn.functional.pad(x, (0, n_pad), "reflect") x = x.view(b, c, -1, self.period) for conv in self.convs: x = self.lrelu(conv(x)) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap