import math import torch from torch.nn.utils import remove_weight_norm from torch.nn.utils.parametrizations import weight_norm from typing import Optional from rvc.lib.algorithm.generators import SineGenerator from rvc.lib.algorithm.residuals import LRELU_SLOPE, ResBlock from rvc.lib.algorithm.commons import init_weights class SourceModuleHnNSF(torch.nn.Module): """ Source Module for harmonic-plus-noise excitation. Args: sample_rate (int): Sampling rate in Hz. harmonic_num (int, optional): Number of harmonics above F0. Defaults to 0. sine_amp (float, optional): Amplitude of sine source signal. Defaults to 0.1. add_noise_std (float, optional): Standard deviation of additive Gaussian noise. Defaults to 0.003. voiced_threshod (float, optional): Threshold to set voiced/unvoiced given F0. Defaults to 0. is_half (bool, optional): Whether to use half precision. Defaults to True. """ def __init__( self, sample_rate: int, harmonic_num: int = 0, sine_amp: float = 0.1, add_noise_std: float = 0.003, voiced_threshod: float = 0, is_half: bool = True, ): super(SourceModuleHnNSF, self).__init__() self.sine_amp = sine_amp self.noise_std = add_noise_std self.is_half = is_half self.l_sin_gen = SineGenerator( sample_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod ) self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) self.l_tanh = torch.nn.Tanh() def forward(self, x: torch.Tensor, upsample_factor: int = 1): sine_wavs, uv, _ = self.l_sin_gen(x, upsample_factor) sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype) sine_merge = self.l_tanh(self.l_linear(sine_wavs)) return sine_merge, None, None class GeneratorNSF(torch.nn.Module): """ Generator for synthesizing audio using the NSF (Neural Source Filter) approach. Args: initial_channel (int): Number of channels in the initial convolutional layer. resblock (str): Type of residual block to use (1 or 2). resblock_kernel_sizes (list): Kernel sizes of the residual blocks. resblock_dilation_sizes (list): Dilation rates of the residual blocks. upsample_rates (list): Upsampling rates. upsample_initial_channel (int): Number of channels in the initial upsampling layer. upsample_kernel_sizes (list): Kernel sizes of the upsampling layers. gin_channels (int): Number of channels for the global conditioning input. sr (int): Sampling rate. is_half (bool, optional): Whether to use half precision. Defaults to False. """ def __init__( self, initial_channel: int, resblock_kernel_sizes: list, resblock_dilation_sizes: list, upsample_rates: list, upsample_initial_channel: int, upsample_kernel_sizes: list, gin_channels: int, sr: int, is_half: bool = False, ): super(GeneratorNSF, self).__init__() self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_rates) self.f0_upsamp = torch.nn.Upsample(scale_factor=math.prod(upsample_rates)) self.m_source = SourceModuleHnNSF( sample_rate=sr, harmonic_num=0, is_half=is_half ) self.conv_pre = torch.nn.Conv1d( initial_channel, upsample_initial_channel, 7, 1, padding=3 ) self.ups = torch.nn.ModuleList() self.noise_convs = torch.nn.ModuleList() channels = [ upsample_initial_channel // (2 ** (i + 1)) for i in range(len(upsample_rates)) ] stride_f0s = [ math.prod(upsample_rates[i + 1 :]) if i + 1 < len(upsample_rates) else 1 for i in range(len(upsample_rates)) ] for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): self.ups.append( weight_norm( torch.nn.ConvTranspose1d( upsample_initial_channel // (2**i), channels[i], k, u, padding=(k - u) // 2, ) ) ) self.noise_convs.append( torch.nn.Conv1d( 1, channels[i], kernel_size=(stride_f0s[i] * 2 if stride_f0s[i] > 1 else 1), stride=stride_f0s[i], padding=(stride_f0s[i] // 2 if stride_f0s[i] > 1 else 0), ) ) self.resblocks = torch.nn.ModuleList( [ ResBlock(channels[i], k, d) for i in range(len(self.ups)) for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes) ] ) self.conv_post = torch.nn.Conv1d(channels[-1], 1, 7, 1, padding=3, bias=False) self.ups.apply(init_weights) if gin_channels != 0: self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1) self.upp = math.prod(upsample_rates) self.lrelu_slope = LRELU_SLOPE def forward(self, x, f0, g: Optional[torch.Tensor] = None): har_source, _, _ = self.m_source(f0, self.upp) har_source = har_source.transpose(1, 2) x = self.conv_pre(x) if g is not None: x += self.cond(g) for i, (ups, noise_convs) in enumerate(zip(self.ups, self.noise_convs)): x = torch.nn.functional.leaky_relu(x, self.lrelu_slope) x = ups(x) x += noise_convs(har_source) xs = sum( self.resblocks[j](x) for j in range(i * self.num_kernels, (i + 1) * self.num_kernels) ) x = xs / self.num_kernels x = torch.nn.functional.leaky_relu(x) x = torch.tanh(self.conv_post(x)) return x def remove_weight_norm(self): for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() def __prepare_scriptable__(self): for l in self.ups: for hook in l._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): remove_weight_norm(l) for l in self.resblocks: for hook in l._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): remove_weight_norm(l) return self