Spaces:
Sleeping
Sleeping
File size: 4,626 Bytes
53f2d01 3696e1b 53f2d01 3696e1b 21a2845 2e8621f 3696e1b 2e8621f 3696e1b 2e8621f 3696e1b 53f2d01 2e8621f 21a2845 53f2d01 2e8621f 53f2d01 2e8621f 53f2d01 3696e1b 2e8621f 3696e1b 2e8621f 21a2845 3696e1b 2e8621f 21a2845 2e8621f 3696e1b 2e8621f 53f2d01 3696e1b 2e8621f 3696e1b 2e8621f 3696e1b 2e8621f 21a2845 3696e1b 2e8621f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import numpy as np
import pandas as pd
import requests
from huggingface_hub.hf_api import SpaceInfo
class PaperList:
def __init__(self) -> None:
self.organization_name = "ICML2022"
self.table = pd.read_csv("papers.csv")
self._preprcess_table()
self.table_header = """
<tr>
<td width="50%">Paper</td>
<td width="26%">Authors</td>
<td width="4%">pdf</td>
<td width="4%">arXiv</td>
<td width="4%">GitHub</td>
<td width="4%">HF Spaces</td>
<td width="4%">HF Models</td>
<td width="4%">HF Datasets</td>
</tr>"""
@staticmethod
def load_space_info(author: str) -> list[SpaceInfo]:
path = "https://huggingface.co/api/spaces"
r = requests.get(path, params={"author": author}, timeout=10)
d = r.json()
return [SpaceInfo(**x) for x in d]
def add_spaces_to_table(self, organization_name: str, df: pd.DataFrame) -> pd.DataFrame:
spaces = self.load_space_info(organization_name)
name2space = {s.id.split("/")[1].lower(): f"https://huggingface.co/spaces/{s.id}" for s in spaces}
df["hf_space"] = df.loc[:, ["hf_space", "github"]].apply(
lambda x: (
x[0]
if isinstance(x[0], str)
else name2space.get(x[1].split("/")[-1].lower() if isinstance(x[1], str) else "", np.nan)
),
axis=1,
)
return df
def _preprcess_table(self) -> None:
self.table = self.add_spaces_to_table(self.organization_name, self.table)
self.table["title_lowercase"] = self.table.title.str.lower()
rows = []
for row in self.table.itertuples():
paper = f'<a href="{row.url}" target="_blank">{row.title}</a>'
pdf = f'<a href="{row.pdf}" target="_blank">pdf</a>'
arxiv = f'<a href="{row.arxiv}" target="_blank">arXiv</a>' if isinstance(row.arxiv, str) else ""
github = f'<a href="{row.github}" target="_blank">GitHub</a>' if isinstance(row.github, str) else ""
hf_space = f'<a href="{row.hf_space}" target="_blank">Space</a>' if isinstance(row.hf_space, str) else ""
hf_model = f'<a href="{row.hf_model}" target="_blank">Model</a>' if isinstance(row.hf_model, str) else ""
hf_dataset = (
f'<a href="{row.hf_dataset}" target="_blank">Dataset</a>' if isinstance(row.hf_dataset, str) else ""
)
new_row = f"""
<tr>
<td>{paper}</td>
<td>{row.authors}</td>
<td>{pdf}</td>
<td>{arxiv}</td>
<td>{github}</td>
<td>{hf_space}</td>
<td>{hf_model}</td>
<td>{hf_dataset}</td>
</tr>"""
rows.append(new_row)
self.table["html_table_content"] = rows
def render(self, search_query: str, case_sensitive: bool, filter_names: list[str]) -> tuple[int, str]:
df = self.add_spaces_to_table(self.organization_name, self.table)
if search_query:
if case_sensitive:
df = df[df.title.str.contains(search_query)]
else:
df = df[df.title_lowercase.str.contains(search_query.lower())]
has_arxiv = "arXiv" in filter_names
has_github = "GitHub" in filter_names
has_hf_space = "HF Space" in filter_names
has_hf_model = "HF Model" in filter_names
has_hf_dataset = "HF Dataset" in filter_names
df = self.filter_table(df, has_arxiv, has_github, has_hf_space, has_hf_model, has_hf_dataset)
return len(df), self.to_html(df, self.table_header)
@staticmethod
def filter_table(
df: pd.DataFrame,
has_arxiv: bool,
has_github: bool,
has_hf_space: bool,
has_hf_model: bool,
has_hf_dataset: bool,
) -> pd.DataFrame:
if has_arxiv:
df = df[~df.arxiv.isna()]
if has_github:
df = df[~df.github.isna()]
if has_hf_space:
df = df[~df.hf_space.isna()]
if has_hf_model:
df = df[~df.hf_model.isna()]
if has_hf_dataset:
df = df[~df.hf_dataset.isna()]
return df
@staticmethod
def to_html(df: pd.DataFrame, table_header: str) -> str:
table_data = "".join(df.html_table_content)
return f"""
<table>
{table_header}
{table_data}
</table>"""
|