Spaces:
Runtime error
Runtime error
import os | |
os.system('cd fairseq;' | |
'pip install --use-feature=in-tree-build ./; cd ..') | |
os.system('ls -l') | |
import torch | |
import numpy as np | |
import gradio as gr | |
import cv2 | |
from PIL import Image | |
from torchvision import transforms | |
from fairseq import utils, tasks, options | |
from fairseq import checkpoint_utils | |
from fairseq.dataclass.utils import convert_namespace_to_omegaconf | |
from tasks.mm_tasks.caption import CaptionTask | |
from tasks.mm_tasks.refcoco import RefcocoTask | |
from tasks.mm_tasks.vqa_gen import VqaGenTask | |
def move2gpu(models, cfg): | |
for model in models: | |
model.eval() | |
if use_fp16: | |
model.half() | |
if use_cuda and not cfg.distributed_training.pipeline_model_parallel: | |
model.cuda() | |
model.prepare_for_inference_(cfg) | |
def construct_transform(patch_image_size): | |
mean = [0.5, 0.5, 0.5] | |
std = [0.5, 0.5, 0.5] | |
patch_resize_transform = transforms.Compose([ | |
lambda image: image.convert("RGB"), | |
transforms.Resize((patch_image_size, patch_image_size), interpolation=Image.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=mean, std=std), | |
]) | |
return patch_resize_transform | |
# Register tasks | |
tasks.register_task('caption', CaptionTask) | |
tasks.register_task('refcoco', RefcocoTask) | |
tasks.register_task('vqa_gen', VqaGenTask) | |
# turn on cuda if GPU is available | |
use_cuda = torch.cuda.is_available() | |
# use fp16 only when GPU is available | |
use_fp16 = False | |
# download checkpoints | |
os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/caption_demo.pt; ' | |
'mkdir -p checkpoints; mv caption_demo.pt checkpoints/caption_demo.pt') | |
os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/refcoco_demo.pt; ' | |
'mkdir -p checkpoints; mv refcoco_demo.pt checkpoints/refcoco_demo.pt') | |
os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/general_demo.pt; ' | |
'mkdir -p checkpoints; mv general_demo.pt checkpoints/general_demo.pt') | |
# Load ckpt & config for Image Captioning | |
caption_overrides = {"bpe_dir": "utils/BPE", "eval_cider": False, "beam": 5, | |
"max_len_b": 16, "no_repeat_ngram_size": 3, "seed": 7} | |
caption_models, caption_cfg, caption_task = checkpoint_utils.load_model_ensemble_and_task( | |
utils.split_paths('checkpoints/caption_demo.pt'), | |
arg_overrides=caption_overrides | |
) | |
# Load ckpt & config for Refcoco | |
refcoco_overrides = {"bpe_dir": "utils/BPE", "eval_cider": False, "beam": 5, | |
"max_len_b": 16, "no_repeat_ngram_size": 3, "seed": 7} | |
refcoco_models, refcoco_cfg, refcoco_task = checkpoint_utils.load_model_ensemble_and_task( | |
utils.split_paths('checkpoints/refcoco_demo.pt'), | |
arg_overrides=refcoco_overrides | |
) | |
refcoco_cfg.common.seed = 7 | |
refcoco_cfg.generation.beam = 5 | |
refcoco_cfg.generation.min_len = 4 | |
refcoco_cfg.generation.max_len_a = 0 | |
refcoco_cfg.generation.max_len_b = 4 | |
refcoco_cfg.generation.no_repeat_ngram_size = 3 | |
# Load pretrained ckpt & config for VQA | |
parser = options.get_generation_parser() | |
input_args = ["", "--task=vqa_gen", "--beam=100", "--unnormalized", "--path=checkpoints/general_demo.pt", "--bpe-dir=utils/BPE"] | |
args = options.parse_args_and_arch(parser, input_args) | |
vqa_cfg = convert_namespace_to_omegaconf(args) | |
vqa_task = tasks.setup_task(vqa_cfg.task) | |
vqa_models, vqa_cfg = checkpoint_utils.load_model_ensemble( | |
utils.split_paths(vqa_cfg.common_eval.path), | |
task=vqa_task | |
) | |
# Load pretrained ckpt & config for Generic Interface | |
parser = options.get_generation_parser() | |
input_args = ["", "--task=refcoco", "--beam=10", "--path=checkpoints/general_demo.pt", "--bpe-dir=utils/BPE", "--no-repeat-ngram-size=3", "--patch-image-size=384"] | |
args = options.parse_args_and_arch(parser, input_args) | |
general_cfg = convert_namespace_to_omegaconf(args) | |
general_task = tasks.setup_task(general_cfg.task) | |
general_models, general_cfg = checkpoint_utils.load_model_ensemble( | |
utils.split_paths(general_cfg.common_eval.path), | |
task=general_task | |
) | |
# move models to gpu | |
move2gpu(caption_models, caption_cfg) | |
move2gpu(refcoco_models, refcoco_cfg) | |
move2gpu(vqa_models, vqa_cfg) | |
move2gpu(general_models, general_cfg) | |
# Initialize generator | |
caption_generator = caption_task.build_generator(caption_models, caption_cfg.generation) | |
refcoco_generator = refcoco_task.build_generator(refcoco_models, refcoco_cfg.generation) | |
vqa_generator = vqa_task.build_generator(vqa_models, vqa_cfg.generation) | |
vqa_generator.zero_shot = True | |
vqa_generator.constraint_trie = None | |
general_generator = general_task.build_generator(general_models, general_cfg.generation) | |
# Construct image transforms | |
caption_transform = construct_transform(caption_cfg.task.patch_image_size) | |
refcoco_transform = construct_transform(refcoco_cfg.task.patch_image_size) | |
vqa_transform = construct_transform(vqa_cfg.task.patch_image_size) | |
general_transform = construct_transform(general_cfg.task.patch_image_size) | |
# Text preprocess | |
bos_item = torch.LongTensor([caption_task.src_dict.bos()]) | |
eos_item = torch.LongTensor([caption_task.src_dict.eos()]) | |
pad_idx = caption_task.src_dict.pad() | |
def get_symbols_to_strip_from_output(generator): | |
if hasattr(generator, "symbols_to_strip_from_output"): | |
return generator.symbols_to_strip_from_output | |
else: | |
return {generator.bos, generator.eos} | |
def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None): | |
x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator)) | |
token_result = [] | |
bin_result = [] | |
img_result = [] | |
for token in x.strip().split(): | |
if token.startswith('<bin_'): | |
bin_result.append(token) | |
elif token.startswith('<code_'): | |
img_result.append(token) | |
else: | |
if bpe is not None: | |
token = bpe.decode('{}'.format(token)) | |
if tokenizer is not None: | |
token = tokenizer.decode(token) | |
if token.startswith(' ') or len(token_result) == 0: | |
token_result.append(token.strip()) | |
else: | |
token_result[-1] += token | |
return ' '.join(token_result), ' '.join(bin_result), ' '.join(img_result) | |
def bin2coord(bins, w_resize_ratio, h_resize_ratio, cfg): | |
bin_list = [int(bin[5:-1]) for bin in bins.strip().split()] | |
coord_list = [] | |
coord_list += [bin_list[0] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / w_resize_ratio] | |
coord_list += [bin_list[1] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / h_resize_ratio] | |
coord_list += [bin_list[2] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / w_resize_ratio] | |
coord_list += [bin_list[3] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / h_resize_ratio] | |
return coord_list | |
def encode_text(text, length=None, append_bos=False, append_eos=False): | |
line = [ | |
caption_task.bpe.encode(' {}'.format(word.strip())) | |
if not word.startswith('<code_') and not word.startswith('<bin_') else word | |
for word in text.strip().split() | |
] | |
line = ' '.join(line) | |
s = caption_task.tgt_dict.encode_line( | |
line=line, | |
add_if_not_exist=False, | |
append_eos=False | |
).long() | |
if length is not None: | |
s = s[:length] | |
if append_bos: | |
s = torch.cat([bos_item, s]) | |
if append_eos: | |
s = torch.cat([s, eos_item]) | |
return s | |
def construct_sample(image: Image, instruction: str, transform): | |
patch_image = transform(image).unsqueeze(0) | |
patch_mask = torch.tensor([True]) | |
instruction = encode_text(' {}'.format(instruction.lower().strip()), append_bos=True, append_eos=True).unsqueeze(0) | |
instruction_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in instruction]) | |
sample = { | |
"id": np.array(['42']), | |
"net_input": { | |
"src_tokens": instruction, | |
"src_lengths": instruction_length, | |
"patch_images": patch_image, | |
"patch_masks": patch_mask, | |
} | |
} | |
return sample | |
# Function to turn FP32 to FP16 | |
def apply_half(t): | |
if t.dtype is torch.float32: | |
return t.to(dtype=torch.half) | |
return t | |
def inference(image, task_type, instruction): | |
if task_type == 'Image Captioning': | |
task = caption_task | |
models = caption_models | |
generator = caption_generator | |
instruction = 'what does the image describe?' | |
transform = caption_transform | |
cfg = caption_cfg | |
elif task_type == 'Visual Question Answering': | |
task = vqa_task | |
models = vqa_models | |
generator = vqa_generator | |
transform = vqa_transform | |
cfg = vqa_cfg | |
elif task_type == 'Visual Grounding': | |
task = refcoco_task | |
models = refcoco_models | |
generator = refcoco_generator | |
instruction = 'which region does the text " {} " describe?'.format(instruction) | |
transform = refcoco_transform | |
cfg = refcoco_cfg | |
elif task_type == 'General': | |
task = general_task | |
models = general_models | |
generator = general_generator | |
transform = general_transform | |
cfg = general_cfg | |
else: | |
raise NotImplementedError | |
# Construct input sample & preprocess for GPU if cuda available | |
sample = construct_sample(image, instruction, transform) | |
sample = utils.move_to_cuda(sample) if use_cuda else sample | |
sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample | |
# Generate result | |
with torch.no_grad(): | |
hypos = task.inference_step(generator, models, sample) | |
tokens, bins, imgs = decode_fn(hypos[0][0]["tokens"], task.tgt_dict, task.bpe, generator) | |
if bins.strip() != '': | |
w, h = image.size | |
w_resize_ratio = task.cfg.patch_image_size / w | |
h_resize_ratio = task.cfg.patch_image_size / h | |
img = np.asarray(image) | |
coord_list = bin2coord(bins, w_resize_ratio, h_resize_ratio, cfg) | |
cv2.rectangle( | |
img, | |
(int(coord_list[0]), int(coord_list[1])), | |
(int(coord_list[2]), int(coord_list[3])), | |
(0, 255, 0), | |
3 | |
) | |
return img, None | |
else: | |
return None, tokens | |
inputs = [gr.inputs.Image(type='pil'), gr.inputs.Radio(choices=['Image Captioning',"Visual Question Answering", "Visual Grounding", "General"], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")] | |
outputs = [gr.outputs.Image(type='pil'), 'text'] | |
examples = [ | |
['examples/pokemons.jpeg', 'Image Captioning', None], | |
['examples/cats.jpeg', 'Visual Question Answering', 'where are the cats?'], | |
['examples/one_piece.jpeg', 'Visual Grounding', 'a man in a straw hat and a red dress'], | |
['examples/three_houses.jpeg', 'General', 'which region does the text " a grey car " describe?'], | |
['examples/three_houses.jpeg', 'General', 'what color is the left car?'] | |
] | |
title = "OFA" | |
description = "Gradio Demo for OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework" | |
article = "<p style='text-align: center'><a href='http://arxiv.org/abs/2202.03052' target='_blank'>Paper</a> | <a href='https://github.com/OFA-Sys/OFA' target='_blank'>Github Repo</a></p>" | |
io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs, | |
title=title, description=description, article=article, examples=examples, cache_examples=False) | |
io.launch() |