Spaces:
Runtime error
Runtime error
File size: 12,261 Bytes
54125c1 f45dd9b 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 0e8e9e2 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 159a2aa f9b12c3 54125c1 4dc6d69 f45dd9b 54125c1 0e8e9e2 54125c1 4dc6d69 54125c1 4dc6d69 54125c1 4dc6d69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import os, sys
import random
import warnings
os.system("python -m pip install -e segment_anything")
os.system("python -m pip install -e GroundingDINO")
os.system("pip install --upgrade diffusers[torch]")
os.system("pip install opencv-python pycocotools matplotlib onnxruntime onnx ipykernel")
os.system("wget https://github.com/IDEA-Research/Grounded-Segment-Anything/raw/main/assets/demo1.jpg")
os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth")
os.system("wget https://huggingface.co/spaces/mrtlive/segment-anything-model/resolve/main/sam_vit_h_4b8939.pth")
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "segment_anything"))
warnings.filterwarnings("ignore")
import gradio as gr
import argparse
import numpy as np
import torch
import torchvision
from PIL import Image, ImageDraw, ImageFont
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import build_sam, SamPredictor
import numpy as np
# diffusers
import torch
from diffusers import StableDiffusionInpaintPipeline
# BLIP
from transformers import BlipProcessor, BlipForConditionalGeneration
def generate_caption(processor, blip_model, raw_image):
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt").to(
"cuda", torch.float16)
out = blip_model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
def transform_image(image_pil):
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(
clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(
logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(
pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
def draw_mask(mask, draw, random_color=False):
if random_color:
color = (random.randint(0, 255), random.randint(
0, 255), random.randint(0, 255), 153)
else:
color = (30, 144, 255, 153)
nonzero_coords = np.transpose(np.nonzero(mask))
for coord in nonzero_coords:
draw.point(coord[::-1], fill=color)
def draw_box(box, draw, label):
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
draw.rectangle(((box[0], box[1]), (box[2], box[3])),
outline=color, width=2)
if label:
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((box[0], box[1]), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (box[0], box[1], w + box[0], box[1] + h)
draw.rectangle(bbox, fill=color)
draw.text((box[0], box[1]), str(label), fill="white")
draw.text((box[0], box[1]), label)
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
sam_checkpoint = 'sam_vit_h_4b8939.pth'
output_dir = "outputs"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
blip_processor = None
blip_model = None
groundingdino_model = None
sam_predictor = None
inpaint_pipeline = None
def run_grounded_sam(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode):
global blip_processor, blip_model, groundingdino_model, sam_predictor, inpaint_pipeline
# make dir
os.makedirs(output_dir, exist_ok=True)
# load image
image_pil = input_image.convert("RGB")
transformed_image = transform_image(image_pil)
if groundingdino_model is None:
groundingdino_model = load_model(
config_file, ckpt_filenmae, device=device)
if task_type == 'automatic':
# generate caption and tags
# use Tag2Text can generate better captions
# https://huggingface.co/spaces/xinyu1205/Tag2Text
# but there are some bugs...
blip_processor = blip_processor or BlipProcessor.from_pretrained(
"Salesforce/blip-image-captioning-large")
blip_model = blip_model or BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
text_prompt = generate_caption(blip_processor, blip_model, image_pil)
print(f"Caption: {text_prompt}")
# run grounding dino model
boxes_filt, scores, pred_phrases = get_grounding_output(
groundingdino_model, transformed_image, text_prompt, box_threshold, text_threshold
)
size = image_pil.size
# process boxes
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
# nms
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
nms_idx = torchvision.ops.nms(
boxes_filt, scores, iou_threshold).numpy().tolist()
boxes_filt = boxes_filt[nms_idx]
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
print(f"After NMS: {boxes_filt.shape[0]} boxes")
if task_type == 'seg' or task_type == 'inpainting' or task_type == 'automatic':
if sam_predictor is None:
# initialize SAM
assert sam_checkpoint, 'sam_checkpoint is not found!'
sam = build_sam(checkpoint=sam_checkpoint)
sam.to(device=device)
sam_predictor = SamPredictor(sam)
image = np.array(image_pil)
sam_predictor.set_image(image)
if task_type == 'automatic':
# use NMS to handle overlapped boxes
print(f"Revise caption with number: {text_prompt}")
transformed_boxes = sam_predictor.transform.apply_boxes_torch(
boxes_filt, image.shape[:2]).to(device)
masks, _, _ = sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
# masks: [1, 1, 512, 512]
if task_type == 'det':
image_draw = ImageDraw.Draw(image_pil)
for box, label in zip(boxes_filt, pred_phrases):
draw_box(box, image_draw, label)
return [image_pil]
elif task_type == 'seg' or task_type == 'automatic':
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
mask_draw = ImageDraw.Draw(mask_image)
for mask in masks:
draw_mask(mask[0].cpu().numpy(), mask_draw, random_color=True)
image_draw = ImageDraw.Draw(image_pil)
for box, label in zip(boxes_filt, pred_phrases):
draw_box(box, image_draw, label)
if task_type == 'automatic':
image_draw.text((10, 10), text_prompt, fill='black')
image_pil = image_pil.convert('RGBA')
image_pil.alpha_composite(mask_image)
return [image_pil, mask_image]
elif task_type == 'inpainting':
assert inpaint_prompt, 'inpaint_prompt is not found!'
# inpainting pipeline
if inpaint_mode == 'merge':
masks = torch.sum(masks, dim=0).unsqueeze(0)
masks = torch.where(masks > 0, True, False)
# simply choose the first mask, which will be refine in the future release
mask = masks[0][0].cpu().numpy()
mask_pil = Image.fromarray(mask)
if inpaint_pipeline is None:
inpaint_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
)
inpaint_pipeline = inpaint_pipeline.to("cuda")
image = inpaint_pipeline(prompt=inpaint_prompt, image=image_pil.resize(
(512, 512)), mask_image=mask_pil.resize((512, 512))).images[0]
image = image.resize(size)
return [image, mask_pil]
else:
print("task_type:{} error!".format(task_type))
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
parser.add_argument("--debug", action="store_true",
help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
parser.add_argument('--no-gradio-queue', action="store_true",
help='path to the SAM checkpoint')
args = parser.parse_args()
print(args)
block = gr.Blocks()
if not args.no_gradio_queue:
block = block.queue()
with block:
with gr.Row():
with gr.Column():
input_image = gr.Image(
source='upload', type="pil", value="demo1.jpg")
task_type = gr.Dropdown(
["det", "seg", "inpainting", "automatic"], value="seg", label="task_type")
text_prompt = gr.Textbox(label="Text Prompt", placeholder="bear . beach .")
inpaint_prompt = gr.Textbox(label="Inpaint Prompt", placeholder="A dinosaur, detailed, 4K.")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
)
text_threshold = gr.Slider(
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
iou_threshold = gr.Slider(
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001
)
inpaint_mode = gr.Dropdown(
["merge", "first"], value="merge", label="inpaint_mode")
with gr.Column():
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(preview=True, grid=2, object_fit="scale-down")
run_button.click(fn=run_grounded_sam, inputs=[
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode], outputs=gallery)
block.launch(debug=args.debug, share=args.share, show_error=True)
|