Spaces:
Sleeping
Sleeping
File size: 4,705 Bytes
3b28b98 e331aa7 3b28b98 e331aa7 3b28b98 e331aa7 3b28b98 e331aa7 3b28b98 e331aa7 73856e8 e331aa7 3b28b98 e331aa7 73856e8 e331aa7 e7c1d62 3b28b98 e331aa7 63eabb5 3b28b98 63eabb5 3b28b98 63eabb5 3b28b98 e331aa7 3b28b98 e331aa7 3b28b98 e331aa7 73856e8 3b28b98 e331aa7 9c57b91 3b28b98 e331aa7 9c57b91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import gradio as gr
import requests
import os
import shutil
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Optional
import torch
from io import BytesIO
from huggingface_hub import CommitInfo, Discussion, HfApi, hf_hub_download
from huggingface_hub.file_download import repo_folder_name
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
download_from_original_stable_diffusion_ckpt, download_controlnet_from_original_ckpt
)
from transformers import CONFIG_MAPPING
COMMIT_MESSAGE = " This PR adds fp32 and fp16 weights in PyTorch and safetensors format to {}"
def convert_single(model_id: str, token:str, filename: str, model_type: str, sample_size: int, scheduler_type: str, extract_ema: bool, folder: str, progress):
from_safetensors = filename.endswith(".safetensors")
progress(0, desc="Downloading model")
local_file = os.path.join(model_id, filename)
ckpt_file = local_file if os.path.isfile(local_file) else hf_hub_download(repo_id=model_id, filename=filename, token=token)
if model_type == "v1":
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
elif model_type == "v2":
if sample_size == 512:
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml"
else:
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
elif model_type == "ControlNet":
config_url = (Path(model_id)/"resolve/main"/filename).with_suffix(".yaml")
config_url = "https://huggingface.co/" + str(config_url)
#config_file = BytesIO(requests.get(config_url).content)
response = requests.get(config_url)
with tempfile.NamedTemporaryFile(delete=False, mode='wb') as tmp_file:
tmp_file.write(response.content)
temp_config_file_path = tmp_file.name
if model_type == "ControlNet":
progress(0.2, desc="Converting ControlNet Model")
pipeline = download_controlnet_from_original_ckpt(ckpt_file, temp_config_file_path, image_size=sample_size, from_safetensors=from_safetensors, extract_ema=extract_ema)
to_args = {"dtype": torch.float16}
else:
progress(0.1, desc="Converting Model")
pipeline = download_from_original_stable_diffusion_ckpt(ckpt_file, temp_config_file_path, image_size=sample_size, scheduler_type=scheduler_type, from_safetensors=from_safetensors, extract_ema=extract_ema)
to_args = {"torch_dtype": torch.float16}
pipeline.save_pretrained(folder)
pipeline.save_pretrained(folder, safe_serialization=True)
pipeline = pipeline.to(**to_args)
pipeline.save_pretrained(folder, variant="fp16")
pipeline.save_pretrained(folder, safe_serialization=True, variant="fp16")
return folder
def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
try:
discussions = api.get_repo_discussions(repo_id=model_id)
except Exception:
return None
for discussion in discussions:
if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title:
details = api.get_discussion_details(repo_id=model_id, discussion_num=discussion.num)
if details.target_branch == "refs/heads/main":
return discussion
def convert(token: str, model_id: str, filename: str, model_type: str, sample_size: int = 512, scheduler_type: str = "pndm", extract_ema: bool = True, progress=gr.Progress()):
api = HfApi()
pr_title = "Adding `diffusers` weights of this model"
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder)
new_pr = None
try:
folder = convert_single(model_id, token, filename, model_type, sample_size, scheduler_type, extract_ema, folder, progress)
progress(0.7, desc="Uploading to Hub")
new_pr = api.upload_folder(folder_path=folder, path_in_repo="./", repo_id=model_id, repo_type="model", token=token, commit_message=pr_title, commit_description=COMMIT_MESSAGE.format(model_id), create_pr=True)
pr_number = new_pr.split("%2F")[-1].split("/")[0]
link = f"Pr created at: {'https://huggingface.co/' + os.path.join(model_id, 'discussions', pr_number)}"
progress(1, desc="Done")
except Exception as e:
raise gr.exceptions.Error(str(e))
finally:
shutil.rmtree(folder)
return link
|