Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
import os | |
import shutil | |
from pathlib import Path | |
from tempfile import TemporaryDirectory | |
from typing import Optional | |
import torch | |
from io import BytesIO | |
from huggingface_hub import CommitInfo, Discussion, HfApi, hf_hub_download | |
from huggingface_hub.file_download import repo_folder_name | |
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( | |
download_from_original_stable_diffusion_ckpt, download_controlnet_from_original_ckpt | |
) | |
from transformers import CONFIG_MAPPING | |
COMMIT_MESSAGE = " This PR adds fp32 and fp16 weights in PyTorch and safetensors format to {}" | |
def convert_single(model_id: str, token:str, filename: str, model_type: str, sample_size: int, scheduler_type: str, extract_ema: bool, folder: str, progress): | |
from_safetensors = filename.endswith(".safetensors") | |
progress(0, desc="Downloading model") | |
local_file = os.path.join(model_id, filename) | |
ckpt_file = local_file if os.path.isfile(local_file) else hf_hub_download(repo_id=model_id, filename=filename, token=token) | |
if model_type == "v1": | |
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" | |
elif model_type == "v2": | |
if sample_size == 512: | |
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml" | |
else: | |
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml" | |
elif model_type == "ControlNet": | |
config_url = (Path(model_id)/"resolve/main"/filename).with_suffix(".yaml") | |
config_url = "https://huggingface.co/" + str(config_url) | |
config_file = BytesIO(requests.get(config_url).content) | |
if model_type == "ControlNet": | |
progress(0.2, desc="Converting ControlNet Model") | |
pipeline = download_controlnet_from_original_ckpt(ckpt_file, config_file, image_size=sample_size, from_safetensors=from_safetensors, extract_ema=extract_ema) | |
to_args = {"dtype": torch.float16} | |
else: | |
progress(0.1, desc="Converting Model") | |
pipeline = download_from_original_stable_diffusion_ckpt(ckpt_file, config_file, image_size=sample_size, scheduler_type=scheduler_type, from_safetensors=from_safetensors, extract_ema=extract_ema) | |
to_args = {"torch_dtype": torch.float16} | |
pipeline.save_pretrained(folder) | |
pipeline.save_pretrained(folder, safe_serialization=True) | |
pipeline = pipeline.to(**to_args) | |
pipeline.save_pretrained(folder, variant="fp16") | |
pipeline.save_pretrained(folder, safe_serialization=True, variant="fp16") | |
return folder | |
def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]: | |
try: | |
discussions = api.get_repo_discussions(repo_id=model_id) | |
except Exception: | |
return None | |
for discussion in discussions: | |
if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title: | |
details = api.get_discussion_details(repo_id=model_id, discussion_num=discussion.num) | |
if details.target_branch == "refs/heads/main": | |
return discussion | |
def convert(token: str, model_id: str, filename: str, model_type: str, sample_size: int = 512, scheduler_type: str = "pndm", extract_ema: bool = True, progress=gr.Progress()): | |
api = HfApi() | |
pr_title = "Adding `diffusers` weights of this model" | |
with TemporaryDirectory() as d: | |
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models")) | |
os.makedirs(folder) | |
new_pr = None | |
try: | |
folder = convert_single(model_id, token, filename, model_type, sample_size, scheduler_type, extract_ema, folder, progress) | |
progress(0.7, desc="Uploading to Hub") | |
new_pr = api.upload_folder(folder_path=folder, path_in_repo="./", repo_id=model_id, repo_type="model", token=token, commit_message=pr_title, commit_description=COMMIT_MESSAGE.format(model_id), create_pr=True) | |
pr_number = new_pr.split("%2F")[-1].split("/")[0] | |
link = f"Pr created at: {'https://huggingface.co/' + os.path.join(model_id, 'discussions', pr_number)}" | |
progress(1, desc="Done") | |
except Exception as e: | |
raise gr.exceptions.Error(str(e)) | |
finally: | |
shutil.rmtree(folder) | |
return link | |