import gradio as gr import requests import os import shutil from pathlib import Path from tempfile import TemporaryDirectory from typing import Optional import torch from io import BytesIO from huggingface_hub import CommitInfo, Discussion, HfApi, hf_hub_download from huggingface_hub.file_download import repo_folder_name from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( download_from_original_stable_diffusion_ckpt, download_controlnet_from_original_ckpt ) from transformers import CONFIG_MAPPING COMMIT_MESSAGE = " This PR adds fp32 and fp16 weights in PyTorch and safetensors format to {}" def convert_single(model_id: str, token:str, filename: str, model_type: str, sample_size: int, scheduler_type: str, extract_ema: bool, folder: str, progress): from_safetensors = filename.endswith(".safetensors") progress(0, desc="Downloading model") local_file = os.path.join(model_id, filename) ckpt_file = local_file if os.path.isfile(local_file) else hf_hub_download(repo_id=model_id, filename=filename, token=token) if model_type == "v1": config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" elif model_type == "v2": if sample_size == 512: config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml" else: config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml" elif model_type == "ControlNet": config_url = (Path(model_id)/"resolve/main"/filename).with_suffix(".yaml") config_url = "https://huggingface.co/" + str(config_url) config_file = BytesIO(requests.get(config_url).content) if model_type == "ControlNet": progress(0.2, desc="Converting ControlNet Model") pipeline = download_controlnet_from_original_ckpt(ckpt_file, config_file, image_size=sample_size, from_safetensors=from_safetensors, extract_ema=extract_ema) to_args = {"dtype": torch.float16} else: progress(0.1, desc="Converting Model") pipeline = download_from_original_stable_diffusion_ckpt(ckpt_file, config_file, image_size=sample_size, scheduler_type=scheduler_type, from_safetensors=from_safetensors, extract_ema=extract_ema) to_args = {"torch_dtype": torch.float16} pipeline.save_pretrained(folder) pipeline.save_pretrained(folder, safe_serialization=True) pipeline = pipeline.to(**to_args) pipeline.save_pretrained(folder, variant="fp16") pipeline.save_pretrained(folder, safe_serialization=True, variant="fp16") return folder def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]: try: discussions = api.get_repo_discussions(repo_id=model_id) except Exception: return None for discussion in discussions: if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title: details = api.get_discussion_details(repo_id=model_id, discussion_num=discussion.num) if details.target_branch == "refs/heads/main": return discussion def convert(token: str, model_id: str, filename: str, model_type: str, sample_size: int = 512, scheduler_type: str = "pndm", extract_ema: bool = True, progress=gr.Progress()): api = HfApi() pr_title = "Adding `diffusers` weights of this model" with TemporaryDirectory() as d: folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models")) os.makedirs(folder) new_pr = None try: folder = convert_single(model_id, token, filename, model_type, sample_size, scheduler_type, extract_ema, folder, progress) progress(0.7, desc="Uploading to Hub") new_pr = api.upload_folder(folder_path=folder, path_in_repo="./", repo_id=model_id, repo_type="model", token=token, commit_message=pr_title, commit_description=COMMIT_MESSAGE.format(model_id), create_pr=True) pr_number = new_pr.split("%2F")[-1].split("/")[0] link = f"Pr created at: {'https://huggingface.co/' + os.path.join(model_id, 'discussions', pr_number)}" progress(1, desc="Done") except Exception as e: raise gr.exceptions.Error(str(e)) finally: shutil.rmtree(folder) return link