IHHI commited on
Commit
6aa5e29
·
1 Parent(s): 9db3ee9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -13
app.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -12,37 +12,37 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- syn_pipe = pipeline("text-to-speech", "suno/bark-small")
 
 
 
16
 
17
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
18
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
19
 
20
 
21
  def translate(audio):
22
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "es"})
23
  return outputs["text"]
24
 
25
 
26
  def synthesise(text):
27
- speech = syn_pipe(text, forward_params={"do_sample": True})
28
- return speech["sampling_rate"], speech["audio"]
 
29
 
30
 
31
  def speech_to_speech_translation(audio):
32
  translated_text = translate(audio)
33
- print(translated_text)
34
- target_dtype = np.int16
35
- max_range = np.iinfo(target_dtype).max
36
- sr, audio = synthesise(translated_text)
37
- audio = (audio * 32767).astype(np.int16)
38
- return sr, audio.T
39
 
40
 
41
  title = "Cascaded STST"
42
  description = """
43
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
44
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
45
-
46
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
47
  """
48
 
@@ -60,6 +60,7 @@ file_translate = gr.Interface(
60
  fn=speech_to_speech_translation,
61
  inputs=gr.Audio(source="upload", type="filepath"),
62
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
 
63
  title=title,
64
  description=description,
65
  )
@@ -67,4 +68,4 @@ file_translate = gr.Interface(
67
  with demo:
68
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
69
 
70
- demo.launch()
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ processor = SpeechT5Processor.from_pretrained("YeQing/speecht5_tts_commonvioce_zh")
16
+
17
+ model = SpeechT5ForTextToSpeech.from_pretrained("YeQing/speecht5_tts_commonvioce_zh").to(device)
18
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language" : "zh"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
+ inputs = processor(text=text, return_tensors="pt")
31
+ speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
+ return speech.cpu()
33
 
34
 
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
+ synthesised_speech = synthesise(translated_text)
38
+ synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
+ return 16000, synthesised_speech
 
 
 
40
 
41
 
42
  title = "Cascaded STST"
43
  description = """
44
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
 
46
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
47
  """
48
 
 
60
  fn=speech_to_speech_translation,
61
  inputs=gr.Audio(source="upload", type="filepath"),
62
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
63
+ examples=[["./example.wav"]],
64
  title=title,
65
  description=description,
66
  )
 
68
  with demo:
69
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
70
 
71
+ demo.launch()