import torch from torch.nn import functional, CrossEntropyLoss, Softmax from torchcrf import CRF from transformers import RobertaModel, BertModel from args import args, config class Model_Crf(torch.nn.Module): def __init__(self, config): super(Model_Crf, self).__init__() self.bert = BertModel.from_pretrained(args.pre_model_name) self.dropout = torch.nn.Dropout(config.hidden_dropout_prob) self.classifier = torch.nn.Linear(config.hidden_size, args.label_size) self.crf = CRF(num_tags=args.label_size, batch_first=True) def forward(self, input_ids, token_type_ids=None, attention_mask=None, context_mask=None, labels=None, span_labels=None, start_positions=None, end_positions=None, testing=False, crf_mask=None): outputs =self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) sequence_output = sequence_output[:,1:-1,:] #remove [CLS], [SEP] logits = self.classifier(sequence_output)#[batch, max_len, label_size] outputs = (logits,) if labels is not None: #print('logits = ', logits.size()) #print('labels = ', labels.size()) #print('crf_mask = ', crf_mask.size()) loss = self.crf(emissions = logits, tags=labels, mask = crf_mask, reduction="mean") outputs =(-1*loss,)+outputs return outputs class Model_Softmax(torch.nn.Module): def __init__(self, config): super(Model_Softmax, self).__init__() self.bert = BertModel.from_pretrained(args.pre_model_name) self.dropout = torch.nn.Dropout(config.hidden_dropout_prob) self.classifier = torch.nn.Linear(config.hidden_size, args.label_size) self.loss_calculater = CrossEntropyLoss() self.softmax = Softmax(dim=-1) def forward(self, input_ids, token_type_ids=None, attention_mask=None, context_mask=None, labels=None, span_labels=None, start_positions=None, end_positions=None, testing=False, crf_mask=None): outputs =self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) sequence_output = sequence_output[:,1:-1,:] #remove [CLS], [SEP] logits = self.classifier(sequence_output)#[batch, max_len, label_size] logits = self.softmax(logits) outputs = (logits,) if labels is not None: #print('logits = ', logits.size()) #print('labels = ', labels.size()) labels = functional.one_hot(labels, num_classes=args.label_size).float() loss = self.loss_calculater(logits, labels) outputs =(loss,)+outputs return outputs