# import streamlit as st # from transformers import pipeline # # Load NER model # ner_model = pipeline("ner", model="has-abi/distilBERT-finetuned-resumes-sections") # # Create Streamlit app # st.title("Named Entity Recognition with Hugging Face models") # # Get user input # text_input = st.text_input("Enter some text:") # # Run NER on user input # if text_input: # results = ner_model(text_input) # for result in results: # st.write(f"{result['word']}: {result['entity']}") import streamlit as st from transformers import pipeline # Set up Resuméner pipeline summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-6-6") # Create Streamlit app st.title("Resuméner") st.write("Upload your resume below to generate a summary.") # Upload resume file uploaded_file = st.file_uploader("Choose a file") if uploaded_file is not None: # Read resume file contents resume_text = uploaded_file.read().decode("utf-8") # Generate summary using Resuméner pipeline summary = summarizer(resume_text, max_length=100, min_length=30, do_sample=False)[0]['summary_text'] # Display summary st.write("Summary:") st.write(summary)