File size: 13,146 Bytes
9f21f05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a54391
 
 
 
 
ba95d01
 
9a54391
 
 
 
 
9f21f05
 
 
 
 
ba95d01
 
386883c
ba95d01
 
 
9f21f05
ba95d01
 
 
2e493f6
9f21f05
 
ba95d01
9f21f05
 
 
 
 
 
ba95d01
 
386883c
ba95d01
 
 
9f21f05
ba95d01
 
9f21f05
 
 
 
 
 
 
 
 
 
 
 
 
ba95d01
 
 
 
 
9f21f05
ba95d01
 
 
9f21f05
 
 
 
1ad2701
 
 
386883c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ad2701
9f21f05
9a54391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e493f6
ba95d01
 
9a54391
386883c
9a54391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386883c
2e493f6
 
 
 
 
 
 
 
 
 
 
 
 
9a54391
2e493f6
 
 
 
 
 
ba95d01
9a54391
ba95d01
 
 
 
 
2e493f6
 
 
 
 
 
 
 
 
 
 
9a54391
2e493f6
 
 
 
ba95d01
 
2e493f6
ba95d01
 
2e493f6
9f21f05
2e493f6
9a54391
2e493f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import gradio as gr
import json

# Import your modules here
from Agents.togetherAIAgent import generate_article_from_query
from Agents.wikiAgent import get_wiki_data
from Agents.rankerAgent import rankerAgent
from Query_Modification.QueryModification import query_Modifier, getKeywords
from Ranking.RRF.RRF_implementation import reciprocal_rank_fusion_three, reciprocal_rank_fusion_six
from Retrieval.tf_idf import tf_idf_pipeline
from Retrieval.bm25 import bm25_pipeline
from Retrieval.vision import vision_pipeline
from Retrieval.openSource import open_source_pipeline
from Baseline.boolean import boolean_pipeline
from AnswerGeneration.getAnswer import generate_answer_withContext, generate_answer_zeroShot

# Load miniWikiCollection
miniWikiCollection = json.load(open('Datasets/mini_wiki_collection.json', 'r'))
miniWikiCollectionDict = {wiki['wikipedia_id']: " ".join(wiki['text']) for wiki in miniWikiCollection}

def process_query(query):
    # Query modification
    modified_query = query_Modifier(query)

    # Context Generation
    article = generate_article_from_query(query)

    # Keyword Extraction and getting context from Wiki
    keywords = getKeywords(query)
    wiki_data = get_wiki_data(keywords)

    # Retrieve rankings
    boolean_ranking = boolean_pipeline(query)
    tf_idf_ranking = tf_idf_pipeline(query)
    bm25_ranking = bm25_pipeline(query)
    vision_ranking = vision_pipeline(query)
    open_source_ranking = open_source_pipeline(query)

    # Modified queries
    boolean_ranking_modified = boolean_pipeline(modified_query)
    tf_idf_ranking_modified = tf_idf_pipeline(modified_query)
    bm25_ranking_modified = bm25_pipeline(modified_query)
    vision_ranking_modified = vision_pipeline(modified_query)
    open_source_ranking_modified = open_source_pipeline(modified_query)

    # RRF rankings
    tf_idf_bm25_open_RRF_Ranking = reciprocal_rank_fusion_three(tf_idf_ranking, bm25_ranking, open_source_ranking)
    tf_idf_bm25_open_RRF_Ranking_modified = reciprocal_rank_fusion_three(tf_idf_ranking_modified, bm25_ranking_modified, open_source_ranking_modified)
    tf_idf_bm25_open_RRF_Ranking_combined = reciprocal_rank_fusion_six(
        tf_idf_ranking, bm25_ranking, open_source_ranking,
        tf_idf_ranking_modified, bm25_ranking_modified, open_source_ranking_modified
    )

    try:
        agent1_context = wiki_data[0]
    except:
        agent1_context = "Can't find a Wiki article for this query."
        
    agent2_context = article

    try:
        boolean_context = miniWikiCollectionDict[boolean_ranking[0]]
    except:
        boolean_context = "Can't find a matching document for this query."

    tf_idf_context = miniWikiCollectionDict[tf_idf_ranking[0]]
    bm25_context = miniWikiCollectionDict[str(bm25_ranking[0])]
    vision_context = miniWikiCollectionDict[vision_ranking[0]]
    open_source_context = miniWikiCollectionDict[open_source_ranking[0]]

    boolean_context_modified = miniWikiCollectionDict[boolean_ranking_modified[0]]
    tf_idf_context_modified = miniWikiCollectionDict[tf_idf_ranking_modified[0]]
    bm25_context_modified = miniWikiCollectionDict[str(bm25_ranking_modified[0])]
    vision_context_modified = miniWikiCollectionDict[vision_ranking_modified[0]]
    open_source_context_modified = miniWikiCollectionDict[open_source_ranking_modified[0]]

    tf_idf_bm25_open_RRF_Ranking_context = miniWikiCollectionDict[tf_idf_bm25_open_RRF_Ranking[0]]
    tf_idf_bm25_open_RRF_Ranking_modified_context = miniWikiCollectionDict[tf_idf_bm25_open_RRF_Ranking_modified[0]]
    tf_idf_bm25_open_RRF_Ranking_combined_context = miniWikiCollectionDict[tf_idf_bm25_open_RRF_Ranking_combined[0]]

    # Generating answers
    agent1_answer = generate_answer_withContext(query, agent1_context)
    agent2_answer = generate_answer_withContext(query, agent2_context)

    boolean_answer = generate_answer_withContext(query, boolean_context)
    tf_idf_answer = generate_answer_withContext(query, tf_idf_context)
    bm25_answer = generate_answer_withContext(query, bm25_context)
    vision_answer = generate_answer_withContext(query, vision_context)
    open_source_answer = generate_answer_withContext(query, open_source_context)

    boolean_answer_modified = generate_answer_withContext(modified_query, boolean_context_modified)
    tf_idf_answer_modified = generate_answer_withContext(modified_query, tf_idf_context_modified)
    bm25_answer_modified = generate_answer_withContext(modified_query, bm25_context_modified)
    vision_answer_modified = generate_answer_withContext(modified_query, vision_context_modified)
    open_source_answer_modified = generate_answer_withContext(modified_query, open_source_context_modified)

    tf_idf_bm25_open_RRF_Ranking_answer = generate_answer_withContext(query, tf_idf_bm25_open_RRF_Ranking_context)
    tf_idf_bm25_open_RRF_Ranking_modified_answer = generate_answer_withContext(modified_query, tf_idf_bm25_open_RRF_Ranking_modified_context)
    tf_idf_bm25_open_RRF_Ranking_combined_answer = generate_answer_withContext(query, tf_idf_bm25_open_RRF_Ranking_combined_context)

    zeroShot = generate_answer_zeroShot(query)

    # Ranking the best answer
    rankerAgentInput = {
        "query": query,
        "agent1": agent1_answer,
        "agent2": agent2_answer,
        "boolean": boolean_answer,
        "tf_idf": tf_idf_answer,
        "bm25": bm25_answer,
        "vision": vision_answer,
        "open_source": open_source_answer,
        "boolean_modified": boolean_answer_modified,
        "tf_idf_modified": tf_idf_answer_modified,
        "bm25_modified": bm25_answer_modified,
        "vision_modified": vision_answer_modified,
        "open_source_modified": open_source_answer_modified,
        "tf_idf_bm25_open_RRF_Ranking": tf_idf_bm25_open_RRF_Ranking_answer,
        "tf_idf_bm25_open_RRF_Ranking_modified": tf_idf_bm25_open_RRF_Ranking_modified_answer,
        "tf_idf_bm25_open_RRF_Ranking_combined": tf_idf_bm25_open_RRF_Ranking_combined_answer,
        "zeroShot": zeroShot
    }

    best_model, best_answer = rankerAgent(rankerAgentInput)

    return (
        best_model,
        best_answer,
        agent1_answer, agent1_context,
        agent2_answer, agent2_context,
        boolean_answer, boolean_context,
        tf_idf_answer, tf_idf_context,
        bm25_answer, bm25_context,
        vision_answer, vision_context,
        open_source_answer, open_source_context,
        boolean_answer_modified, boolean_context_modified,
        tf_idf_answer_modified, tf_idf_context_modified,
        bm25_answer_modified, bm25_context_modified,
        vision_answer_modified, vision_context_modified,
        open_source_answer_modified, open_source_context_modified,
        tf_idf_bm25_open_RRF_Ranking_answer, tf_idf_bm25_open_RRF_Ranking_context,
        tf_idf_bm25_open_RRF_Ranking_modified_answer, tf_idf_bm25_open_RRF_Ranking_modified_context,
        tf_idf_bm25_open_RRF_Ranking_combined_answer, tf_idf_bm25_open_RRF_Ranking_combined_context,
        zeroShot, "Zero-shot doesn't have a context."
    )

# CSS Styling for the fancy effects
css = """
#fancy-column {
    background: linear-gradient(135deg, #1a242f, #2b3a44);  /* Dark blue-gray gradient background */
    padding: 20px;
    border-radius: 15px;
}

#query-input, #submit-button, #best-model-output, #best-answer-output {
    border-radius: 10px;  /* Rounded corners */
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.3);  /* Darker shadow for better contrast */
    background-color: #34495e;  /* Dark background for inputs */
    color: #ecf0f1;  /* Light text for good readability */
}

#query-input:focus, #submit-button:focus, #best-model-output:focus, #best-answer-output:focus {
    outline: none;
    border: 2px solid #7f8c8d;  /* Subtle accent border on focus */
}

#submit-button {
    background-color: #16a085;  /* Muted teal color for button */
    color: #ecf0f1;  /* Light text for button */
    font-weight: bold;
    padding: 10px;
}

#submit-button:hover {
    background-color: #1abc9c;  /* Slightly lighter teal on hover */
}

#best-model-output, #best-answer-output {
    background-color: #2c3e50;  /* Darker background for output boxes */
}

#best-model-output label, #best-answer-output label, #query-input label {
    color: #ecf0f1;  /* Light text for labels */
}
"""



# Interface creation
def create_interface():
    with gr.Blocks() as interface:
        with gr.Column(elem_id="fancy-column", scale=3):  # Fancy column with extra styling
            with gr.Row():
                query_input = gr.Textbox(label="Enter your query", scale=3, elem_id="query-input")
                submit_button = gr.Button("Submit", scale=1, elem_id="submit-button")
            
            # Adjusting the spacing between the output fields
            with gr.Row():
                best_model_output = gr.Textbox(label="Best Model", interactive=False, scale=1.5, elem_id="best-model-output")
                best_answer_output = gr.Textbox(label="Best Answer", interactive=False, scale=1.5, elem_id="best-answer-output")

        with gr.Column():
            # Function to create a row for answers and contexts
            def create_answer_row(label):
                if label == "Agent 1":
                    label = "Wiki Search"
                elif label == "Agent 2":
                    label = "Llama Context Generation"
                elif label == "Open Source Answer":
                    label = 'MiniLM Text Embedding model'
                elif label == "Open Source (Modified)":
                    label = 'MiniLM Text Embedding model (Modified)'
                elif label == "TF-IDF + BM25 + Open RRF":
                    label = "RRF (TF-IDF + BM25 + MiniLM)"
                elif label == "TF-IDF + BM25 + Open RRF (Modified)":
                    label = "RRF (TF-IDF + BM25 + MiniLM) (Modified)"
                elif label == "TF-IDF + BM25 + Open RRF (Combined)":
                    label = "RRF (TF-IDF + BM25 + MiniLM) (Combined)"
                with gr.Row():
                    answer_textbox = gr.Textbox(label=f"{label} Answer", interactive=False, scale=1.2, elem_id="best-model-output")
                    context_textbox = gr.Textbox(label=f"{label} Context", scale=1.8, elem_id="best-answer-output")
                
                return answer_textbox, context_textbox

        agent1_output, agent1_context_output = create_answer_row("Agent 1")
        agent2_output, agent2_context_output = create_answer_row("Agent 2")
        boolean_output, boolean_context_output = create_answer_row("Boolean")
        tf_idf_output, tf_idf_context_output = create_answer_row("TF-IDF")
        bm25_output, bm25_context_output = create_answer_row("BM25")
        vision_output, vision_context_output = create_answer_row("Vision")
        open_source_output, open_source_context_output = create_answer_row("Open Source")

        boolean_mod_output, boolean_mod_context_output = create_answer_row("Boolean (Modified)")
        tf_idf_mod_output, tf_idf_mod_context_output = create_answer_row("TF-IDF (Modified)")
        bm25_mod_output, bm25_mod_context_output = create_answer_row("BM25 (Modified)")
        vision_mod_output, vision_mod_context_output = create_answer_row("Vision (Modified)")
        open_source_mod_output, open_source_mod_context_output = create_answer_row("Open Source (Modified)")

        tf_idf_rrf_output, tf_idf_rrf_context_output = create_answer_row("TF-IDF + BM25 + Open RRF")
        tf_idf_rrf_mod_output, tf_idf_rrf_mod_context_output = create_answer_row("TF-IDF + BM25 + Open RRF (Modified)")
        tf_idf_rrf_combined_output, tf_idf_rrf_combined_context_output = create_answer_row("TF-IDF + BM25 + Open RRF (Combined)")

        zero_shot_output, zero_shot_context_output = create_answer_row("Zero Shot")

        submit_button.click(
            fn=process_query,
            inputs=query_input,
            outputs=[
                best_model_output,
                best_answer_output,
                agent1_output, agent1_context_output,
                agent2_output, agent2_context_output,
                boolean_output, boolean_context_output,
                tf_idf_output, tf_idf_context_output,
                bm25_output, bm25_context_output,
                vision_output, vision_context_output,
                open_source_output, open_source_context_output,
                boolean_mod_output, boolean_mod_context_output,
                tf_idf_mod_output, tf_idf_mod_context_output,
                bm25_mod_output, bm25_mod_context_output,
                vision_mod_output, vision_mod_context_output,
                open_source_mod_output, open_source_mod_context_output,
                tf_idf_rrf_output, tf_idf_rrf_context_output,
                tf_idf_rrf_mod_output, tf_idf_rrf_mod_context_output,
                tf_idf_rrf_combined_output, tf_idf_rrf_combined_context_output,
                zero_shot_output, zero_shot_context_output
            ]
        )

    return interface

# Launch the interface
if __name__ == "__main__":
    interface = create_interface()
    interface.css = css
    interface.launch()