# from dataclasses import dataclass # These classes are for user facing column names, to avoid having to change them # all around the code when a modif is needed # @dataclass # class ColumnContent: # name: str # type: str # displayed_by_default: bool # hidden: bool = False # never_hidden: bool = False # dummy: bool = False # def fields(raw_class): # return [ # v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" # ] # @dataclass(frozen=True) # class AutoEvalColumn: # Auto evals column # model_type_symbol = ColumnContent("T", "str", True) # model = ColumnContent("Model", "markdown", True, never_hidden=True) # average = ColumnContent("Average ⬆️", "number", True) # arc = ColumnContent("ARC", "number", True) # hellaswag = ColumnContent("HellaSwag", "number", True) # mmlu = ColumnContent("MMLU", "number", True) # truthfulqa = ColumnContent("TruthfulQA", "number", True) # model_type = ColumnContent("Type", "str", False) # precision = ColumnContent("Precision", "str", False, True) # license = ColumnContent("Hub License", "str", False) # params = ColumnContent("#Params (B)", "number", False) # likes = ColumnContent("Hub ❤️", "number", False) # revision = ColumnContent("Model sha", "str", False, False) # dummy = ColumnContent( # "model_name_for_query", "str", True # ) # dummy col to implement search bar (hidden by custom CSS) # @dataclass(frozen=True) # class EloEvalColumn: # Elo evals column # model = ColumnContent("Model", "markdown", True) # gpt4 = ColumnContent("GPT-4 (all)", "number", True) # human_all = ColumnContent("Human (all)", "number", True) # human_instruct = ColumnContent("Human (instruct)", "number", True) # human_code_instruct = ColumnContent("Human (code-instruct)", "number", True) # @dataclass(frozen=True) # class EvalQueueColumn: # Queue column # model = ColumnContent("model", "markdown", True) # revision = ColumnContent("revision", "str", True) # private = ColumnContent("private", "bool", True) # precision = ColumnContent("precision", "bool", True) # weight_type = ColumnContent("weight_type", "str", "Original") # status = ColumnContent("status", "str", True) # LLAMAS = [ # "huggingface/llama-7b", # "huggingface/llama-13b", # "huggingface/llama-30b", # "huggingface/llama-65b", # ] # KOALA_LINK = "https://huggingface.co/TheBloke/koala-13B-HF" # VICUNA_LINK = "https://huggingface.co/lmsys/vicuna-13b-delta-v1.1" # OASST_LINK = "https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5" # DOLLY_LINK = "https://huggingface.co/databricks/dolly-v2-12b" # MODEL_PAGE = "https://huggingface.co/models" # LLAMA_LINK = "https://ai.facebook.com/blog/large-language-model-llama-meta-ai/" # VICUNA_LINK = "https://huggingface.co/CarperAI/stable-vicuna-13b-delta" # ALPACA_LINK = "https://crfm.stanford.edu/2023/03/13/alpaca.html" # def model_hyperlink(link, model_name): # return f'{model_name}' # def make_clickable_model(model_name): # link = f"https://huggingface.co/{model_name}" # if model_name in LLAMAS: # link = LLAMA_LINK # model_name = model_name.split("/")[1] # elif model_name == "HuggingFaceH4/stable-vicuna-13b-2904": # link = VICUNA_LINK # model_name = "stable-vicuna-13b" # elif model_name == "HuggingFaceH4/llama-7b-ift-alpaca": # link = ALPACA_LINK # model_name = "alpaca-13b" # if model_name == "dolly-12b": # link = DOLLY_LINK # elif model_name == "vicuna-13b": # link = VICUNA_LINK # elif model_name == "koala-13b": # link = KOALA_LINK # elif model_name == "oasst-12b": # link = OASST_LINK # else: # link = MODEL_PAGE # return model_hyperlink(link, model_name) # def styled_error(error): # return f"

{error}

" # def styled_warning(warn): # return f"

{warn}

" # def styled_message(message): # return ( # f"

{message}

" # ) Qwen_1_8B_Chat_Link = "https://huggingface.co/Qwen/Qwen-1_8B-Chat" Qwen_7B_Chat_Link = "https://huggingface.co/Qwen/Qwen-7B-Chat" Qwen_14B_Chat_Link = "https://huggingface.co/Qwen/Qwen-14B-Chat" Qwen_72B_Chat_Link = "https://huggingface.co/Qwen/Qwen-72B-Chat" Gemma_2B_it_Link = "https://huggingface.co/google/gemma-2b-it" Gemma_7B_it__Link = "https://huggingface.co/google/gemma-7b-it" ChatGLM3_6B_Link = "https://huggingface.co/THUDM/chatglm3-6b" Mistral_7B_Instruct_v0_2_Link = "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2" LLaMA_2_7B_Chat_Link = "https://huggingface.co/meta-llama/Llama-2-7b-chat-hf" LLaMA_2_13B_Chat_Link = "https://huggingface.co/meta-llama/Llama-2-13b-chat-hf" LLaMA_2_70B_Chat_Link = "https://huggingface.co/meta-llama/Llama-2-70b-chat-hf" LLaMA_3_8B_Instruct_Link = "https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct" LLaMA_3_70B_Instruct_Link = "https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct" Vicuna_7B_v1_3_Link = "https://huggingface.co/lmsys/vicuna-7b-v1.3" Vicuna_13B_v1_3_Link = "https://huggingface.co/lmsys/vicuna-13b-v1.3" Vicuna_33B_v1_3_Link = "https://huggingface.co/lmsys/vicuna-33b-v1.3" Baichuan2_13B_Chat_Link = "https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat" Yi_34B_Chat_Link = "https://huggingface.co/01-ai/Yi-34B-Chat" GPT_4_Turbo_Link = "https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4" ErnieBot_4_0_Link = "https://cloud.baidu.com/doc/WENXINWORKSHOP/s/clntwmv7t" Gemini_1_0_Pro_Link = "https://ai.google.dev/gemini-api/docs/models/gemini"