Spaces:
Build error
Build error
import os | |
import gradio as gr | |
from huggingface_hub import snapshot_download | |
import tensorflow as tf | |
from PIL import Image | |
import numpy as np | |
from object_detection.utils import label_map_util | |
from object_detection.utils import visualization_utils as viz_utils | |
# Path to the label map | |
PATH_TO_LABELS = 'data/label_map.pbtxt' | |
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) | |
def pil_image_as_numpy_array(pilimg): | |
img_array = tf.keras.utils.img_to_array(pilimg) | |
img_array = np.expand_dims(img_array, axis=0) | |
return img_array | |
def load_model(repo_id): | |
download_dir = snapshot_download(repo_id) | |
saved_model_dir = os.path.join(download_dir, "saved_model") | |
detection_model = tf.saved_model.load(saved_model_dir) | |
return detection_model | |
# List of sample images in 'test_samples' folder | |
sample_images = [file for file in os.listdir('test_samples') if file.endswith(('.png', '.jpg', '.jpeg'))] | |
sample_images.sort() # Optional: sort the file names | |
def predict(uploaded_img, use_sample, sample_choice): | |
if use_sample: | |
# Use the selected sample image | |
pilimg = Image.open(os.path.join('test_samples', sample_choice)) | |
else: | |
# Use the uploaded image | |
pilimg = uploaded_img | |
image_np = pil_image_as_numpy_array(pilimg) | |
return predict_combined_models(image_np, detection_model_fin, detection_model_ini) | |
def predict_combined_models(image_np, model1, model2): | |
# Process with first model | |
results1 = model1(image_np) | |
result1 = {key:value.numpy() for key,value in results1.items()} | |
# Process with second model | |
results2 = model2(image_np) | |
result2 = {key:value.numpy() for key,value in results2.items()} | |
# Modify category index for each model | |
category_index_model1 = {k: {**v, 'name': v['name'] + ' - Model 1'} for k, v in category_index.items()} | |
category_index_model2 = {k: {**v, 'name': v['name'] + ' - Model 2'} for k, v in category_index.items()} | |
# Visualization for model 1 | |
image_np_with_detections = image_np.copy() | |
viz_utils.visualize_boxes_and_labels_on_image_array( | |
image_np_with_detections[0], | |
result1['detection_boxes'][0], | |
(result1['detection_classes'][0]).astype(int), | |
result1['detection_scores'][0], | |
category_index_model1, | |
use_normalized_coordinates=True, | |
max_boxes_to_draw=200, | |
min_score_thresh=.60, | |
agnostic_mode=False, | |
line_thickness=2) | |
# Visualization for model 2 | |
viz_utils.visualize_boxes_and_labels_on_image_array( | |
image_np_with_detections[0], | |
result2['detection_boxes'][0], | |
(result2['detection_classes'][0]).astype(int), | |
result2['detection_scores'][0], | |
category_index_model2, | |
use_normalized_coordinates=True, | |
max_boxes_to_draw=200, | |
min_score_thresh=.60, | |
agnostic_mode=False, | |
line_thickness=2) | |
# Combine and return final image | |
result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0]) | |
return result_pil_img | |
# Load your models | |
REPO_ID1 = "dtyago/23a052w-iti107-assn2_tfodmodel" | |
REPO_ID2 = "dtyago/23a052w-iti107-assn2_tfodmodel_run1" | |
detection_model_fin = load_model(REPO_ID1) | |
detection_model_ini = load_model(REPO_ID2) | |
# Gradio interface | |
gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Image(type="pil"), # Image upload | |
gr.Checkbox(label="Use a sample image instead"), # Checkbox to choose a sample | |
gr.Dropdown(choices=sample_images, label="Select a Sample Image") # Dropdown to select a sample | |
], | |
outputs=gr.Image(type="pil"), | |
title="Gramophone & Veena Detection with TensorFlow Models", | |
description="This app uses TensorFlow models to detect objects in images. Upload an image to see the detected gramophone and veena. Bounding boxes labeled Run1 = - Model 2, Run2= - Model 1" | |
).launch(share=True) | |