import os import gradio as gr from huggingface_hub import snapshot_download import tensorflow as tf from PIL import Image import numpy as np from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as viz_utils # Path to the label map PATH_TO_LABELS = 'data/label_map.pbtxt' category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) def pil_image_as_numpy_array(pilimg): img_array = tf.keras.utils.img_to_array(pilimg) img_array = np.expand_dims(img_array, axis=0) return img_array def load_model(repo_id): download_dir = snapshot_download(repo_id) saved_model_dir = os.path.join(download_dir, "saved_model") detection_model = tf.saved_model.load(saved_model_dir) return detection_model # List of sample images in 'test_samples' folder sample_images = [file for file in os.listdir('test_samples') if file.endswith(('.png', '.jpg', '.jpeg'))] sample_images.sort() # Optional: sort the file names def predict(uploaded_img, use_sample, sample_choice): if use_sample: # Use the selected sample image pilimg = Image.open(os.path.join('test_samples', sample_choice)) else: # Use the uploaded image pilimg = uploaded_img image_np = pil_image_as_numpy_array(pilimg) return predict_combined_models(image_np, detection_model_fin, detection_model_ini) def predict_combined_models(image_np, model1, model2): # Process with first model results1 = model1(image_np) result1 = {key:value.numpy() for key,value in results1.items()} # Process with second model results2 = model2(image_np) result2 = {key:value.numpy() for key,value in results2.items()} # Modify category index for each model category_index_model1 = {k: {**v, 'name': v['name'] + ' - Model 1'} for k, v in category_index.items()} category_index_model2 = {k: {**v, 'name': v['name'] + ' - Model 2'} for k, v in category_index.items()} # Visualization for model 1 image_np_with_detections = image_np.copy() viz_utils.visualize_boxes_and_labels_on_image_array( image_np_with_detections[0], result1['detection_boxes'][0], (result1['detection_classes'][0]).astype(int), result1['detection_scores'][0], category_index_model1, use_normalized_coordinates=True, max_boxes_to_draw=200, min_score_thresh=.60, agnostic_mode=False, line_thickness=2) # Visualization for model 2 viz_utils.visualize_boxes_and_labels_on_image_array( image_np_with_detections[0], result2['detection_boxes'][0], (result2['detection_classes'][0]).astype(int), result2['detection_scores'][0], category_index_model2, use_normalized_coordinates=True, max_boxes_to_draw=200, min_score_thresh=.60, agnostic_mode=False, line_thickness=2) # Combine and return final image result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0]) return result_pil_img # Load your models REPO_ID1 = "dtyago/23a052w-iti107-assn2_tfodmodel" REPO_ID2 = "dtyago/23a052w-iti107-assn2_tfodmodel_run1" detection_model_fin = load_model(REPO_ID1) detection_model_ini = load_model(REPO_ID2) # Gradio interface gr.Interface( fn=predict, inputs=[ gr.Image(type="pil"), # Image upload gr.Checkbox(label="Use a sample image instead"), # Checkbox to choose a sample gr.Dropdown(choices=sample_images, label="Select a Sample Image") # Dropdown to select a sample ], outputs=gr.Image(type="pil"), title="Gramophone & Veena Detection with TensorFlow Models", description="This app uses TensorFlow models to detect objects in images. Upload an image to see the detected gramophone and veena. Bounding boxes labeled Run1 = - Model 2, Run2= - Model 1" ).launch(share=True)