File size: 2,958 Bytes
bf0820e
 
adca0b0
 
 
ea79ead
 
adca0b0
ea79ead
 
59775ab
 
 
 
d73cc9d
 
 
 
adbc16f
d73cc9d
adca0b0
d73cc9d
 
 
 
 
 
 
 
 
 
 
 
6864537
adbc16f
d73cc9d
 
 
adbc16f
 
 
 
 
 
 
59775ab
d73cc9d
 
 
 
 
 
adbc16f
 
 
 
 
 
 
adca0b0
adbc16f
 
 
 
 
 
 
adca0b0
 
adbc16f
0529d1d
adca0b0
adbc16f
 
 
 
a417a26
adca0b0
d73cc9d
 
adbc16f
d73cc9d
 
 
adca0b0
 
 
55af1b9
adca0b0
 
 
59775ab
 
adca0b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
import tarfile
import wget 
import gradio as gr
from huggingface_hub import snapshot_download
import os 
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op


PATH_TO_LABELS = 'label_map.pbtxt'   
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)


def pil_image_as_numpy_array(pilimg):

    img_array = tf.keras.utils.img_to_array(pilimg)
    img_array = np.expand_dims(img_array, axis=0)
    return img_array
    
def load_image_into_numpy_array(path):
                                    
    image = None
    image_data = tf.io.gfile.GFile(path, 'rb').read()
    image = Image.open(BytesIO(image_data))
    return pil_image_as_numpy_array(image)            

def load_model():
    download_dir = snapshot_download(REPO_ID)
    saved_model_dir = os.path.join(download_dir, "saved_model")
    detection_model = tf.saved_model.load(saved_model_dir)
    return detection_model

def load_model2():
    wget.download("https://nyp-aicourse.s3-ap-southeast-1.amazonaws.com/pretrained-models/balloon_model.tar.gz")
    tarfile.open("balloon_model.tar.gz").extractall()
    model_dir = 'saved_model'    
    detection_model = tf.saved_model.load(str(model_dir))
    return detection_model    



def predict(pilimg):

    image_np = pil_image_as_numpy_array(pilimg)
    return predict2(image_np)

def predict2(image_np):

    results = detection_model(image_np)
    # different object detection models have additional results
    result = {key:value.numpy() for key,value in results.items()}
    label_id_offset = 0
    image_np_with_detections = image_np.copy()

    viz_utils.visualize_boxes_and_labels_on_image_array(
        image_np_with_detections[0],
        result['detection_boxes'][0],
        (result['detection_classes'][0] + label_id_offset).astype(int),
        result['detection_scores'][0],
        category_index,
        use_normalized_coordinates=True,
        max_boxes_to_draw=200,
        min_score_thresh=0.60,
        agnostic_mode=False,
        line_thickness=2)

    result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
    return result_pil_img


REPO_ID = "23A066X/23A066X_model"
detection_model = load_model()
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)

# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')

title = "Cauliflower and Beetroot Detection"
description = "Using ssd_resnet50_v1_fpn_640x640_coco17_tpu-8"


gr.Interface(fn=predict,
             title = title,
             description = description,
             inputs=gr.Image(type="pil", height=250),
             outputs=gr.Image(type="pil", height=250)
             ).launch(share=True)