Spaces:
Sleeping
Sleeping
File size: 2,243 Bytes
f83ceb5 bf0820e f83ceb5 6c3df1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import gradio as gr
import os
import cv2
def greet(name):
return "Hello " + name + "!!"
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
PATH_TO_LABELS = 'data/label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def pil_image_as_numpy_array(pilimg):
img_array = tf.keras.utils.img_to_array(pilimg)
return img_array
def load_model():
model_dir = 'saved_model'
detection_model = tf.saved_model.load(str(model_dir))
return detection_model
def predict(image_np):
image_np = pil_image_as_numpy_array(image_np)
image_np = np.expand_dims(image_np, axis=0)
results = detection_model(image_np)
result = {key: value.numpy() for key, value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.6,
agnostic_mode=False,
line_thickness=2
)
result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img
detection_model = load_model()
# Specify paths to example images
sample_images = [["br_61.jpg"], ["br_61.jpg"],
]
tab1 = gr.Interface(
fn=predict,
inputs=gr.Image(label='Upload an expressway image', type="pil"),
outputs=gr.Image(type="pil"),
title='Image Processing',
examples=sample_images
)
# Create a Multi Interface with Tabs
iface = gr.TabbedInterface([tab1], title='Cauliflower and Beetroot Detection via ssd_resnet50_v1_fpn_640x640_coco17_tpu-8')
# Launch the interface
iface.launch(share=True) |