Spaces:
Sleeping
Sleeping
File size: 3,048 Bytes
bf0820e adca0b0 ea79ead adca0b0 ea79ead 59775ab d73cc9d adbc16f d73cc9d adca0b0 d73cc9d 6864537 adca0b0 adbc16f d73cc9d adbc16f 59775ab d73cc9d adbc16f adca0b0 adbc16f adca0b0 adbc16f adca0b0 adbc16f adca0b0 d73cc9d adbc16f d73cc9d adca0b0 55af1b9 adca0b0 59775ab adca0b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
import tarfile
import wget
import gradio as gr
from huggingface_hub import snapshot_download
import os
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
PATH_TO_LABELS = 'label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def pil_image_as_numpy_array(pilimg):
img_array = tf.keras.utils.img_to_array(pilimg)
img_array = np.expand_dims(img_array, axis=0)
return img_array
def load_image_into_numpy_array(path):
image = None
image_data = tf.io.gfile.GFile(path, 'rb').read()
image = Image.open(BytesIO(image_data))
return pil_image_as_numpy_array(image)
def load_model():
download_dir = snapshot_download(REPO_ID)
# download_dir = os.path.join(download_dir, "saved_model")
saved_model_dir = os.path.join(download_dir, "saved_model")
detection_model = tf.saved_model.load(saved_model_dir)
return detection_model
def load_model2():
wget.download("https://nyp-aicourse.s3-ap-southeast-1.amazonaws.com/pretrained-models/balloon_model.tar.gz")
tarfile.open("balloon_model.tar.gz").extractall()
model_dir = 'saved_model'
detection_model = tf.saved_model.load(str(model_dir))
return detection_model
def predict(pilimg):
image_np = pil_image_as_numpy_array(pilimg)
return predict2(image_np)
def predict2(image_np):
results = detection_model(image_np)
# different object detection models have additional results
result = {key:value.numpy() for key,value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=0.60,
agnostic_mode=False,
line_thickness=3)
result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img
REPO_ID = "A23066X/A23066X_model"
detection_model = load_model()
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)
# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')
title = "Cauliflower and Beetroot Detection"
description = "Using ssd_resnet50_v1_fpn_640x640_coco17_tpu-8"
gr.Interface(fn=predict,
title = title,
description = description,
css=css_code,
inputs=gr.Image(type="pil", height=250),
outputs=gr.Image(type="pil", height=250)
).launch(share=True) |