23A066X / app.py
23A066X's picture
Update app.py
138d82c
raw
history blame
2.04 kB
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget
import gradio as gr
from huggingface_hub import snapshot_download
import os
def greet(name):
return "Hello " + name + "!!"
#iface = gr.Interface(fn=greet, inputs="text", outputs="text")
#iface.launch()
PATH_TO_LABELS = 'label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def pil_image_as_numpy_array(pilimg):
img_array = tf.keras.utils.img_to_array(pilimg)
img_array = np.expand_dims(img_array, axis=0)
return img_array
def load_image_into_numpy_array(path):
image = None
image_data = tf.io.gfile.GFile(path, 'rb').read()
image = Image.open(BytesIO(image_data))
return pil_image_as_numpy_array(image)
def load_model():
download_dir = snapshot_download(REPO_ID)
saved_model_dir = os.path.join(download_dir, "saved_model.pb")
detection_model = tf.saved_model.load(saved_model_dir)
return detection_model
def predict(pilimg):
image_np = pil_image_as_numpy_array(pilimg)
return predict2(image_np)
detection_model = load_model()
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)
# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')
REPO_ID = "23A066X/23A066X_model"
gr.Interface(fn=predict,
inputs=[gr.Image(type="pil",label="Input Image")],
outputs=gr.Image(type="pil",label="Output Image"),
title="Cauliflower and Beetroot Detection",
description="Model: ssd_resnet50_v1_fpn_640x640_coco17_tpu-8",
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky")
).launch(share=True)