brandonongsc commited on
Commit
8eda296
1 Parent(s): 4b092a5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -88
app.py CHANGED
@@ -1,91 +1,7 @@
1
- import matplotlib.pyplot as plt
2
- import numpy as np
3
- from six import BytesIO
4
- from PIL import Image
5
- import tensorflow as tf
6
- from object_detection.utils import label_map_util
7
- from object_detection.utils import visualization_utils as viz_utils
8
- from object_detection.utils import ops as utils_op
9
- import tarfile
10
- import wget
11
  import gradio as gr
12
- from huggingface_hub import snapshot_download
13
- import os
14
 
15
- PATH_TO_LABELS = 'label_map.pbtxt'
16
- category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
17
 
18
- def pil_image_as_numpy_array(pilimg):
19
-
20
- img_array = tf.keras.utils.img_to_array(pilimg)
21
- img_array = np.expand_dims(img_array, axis=0)
22
- return img_array
23
-
24
- def load_image_into_numpy_array(path):
25
-
26
- image = None
27
- image_data = tf.io.gfile.GFile(path, 'rb').read()
28
- image = Image.open(BytesIO(image_data))
29
- return pil_image_as_numpy_array(image)
30
-
31
- def load_model():
32
- download_dir = snapshot_download(REPO_ID)
33
- saved_model_dir = os.path.join(download_dir, "saved_model")
34
- detection_model = tf.saved_model.load(saved_model_dir)
35
- return detection_model
36
-
37
- def load_model2():
38
- wget.download("https://nyp-aicourse.s3-ap-southeast-1.amazonaws.com/pretrained-models/balloon_model.tar.gz")
39
- tarfile.open("balloon_model.tar.gz").extractall()
40
- model_dir = 'saved_model'
41
- detection_model = tf.saved_model.load(str(model_dir))
42
- return detection_model
43
-
44
- # samples_folder = 'test_samples
45
- # image_path = 'test_samples/sample_balloon.jpeg
46
- #
47
-
48
- def predict(pilimg):
49
-
50
- image_np = pil_image_as_numpy_array(pilimg)
51
- return predict2(image_np)
52
-
53
- def predict2(image_np):
54
-
55
- results = detection_model(image_np)
56
-
57
- # different object detection models have additional results
58
- result = {key:value.numpy() for key,value in results.items()}
59
-
60
- label_id_offset = 0
61
- image_np_with_detections = image_np.copy()
62
-
63
- viz_utils.visualize_boxes_and_labels_on_image_array(
64
- image_np_with_detections[0],
65
- result['detection_boxes'][0],
66
- (result['detection_classes'][0] + label_id_offset).astype(int),
67
- result['detection_scores'][0],
68
- category_index,
69
- use_normalized_coordinates=True,
70
- max_boxes_to_draw=200,
71
- min_score_thresh=.60,
72
- agnostic_mode=False,
73
- line_thickness=2)
74
-
75
- result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
76
-
77
- return result_pil_img
78
-
79
-
80
- REPO_ID = "brandonongsc/masknomask_detect_model"
81
- detection_model = load_model()
82
- # pil_image = Image.open(image_path)
83
- # image_arr = pil_image_as_numpy_array(pil_image)
84
-
85
- # predicted_img = predict(image_arr)
86
- # predicted_img.save('predicted.jpg')
87
-
88
- gr.Interface(fn=predict,
89
- inputs=gr.Image(type="pil"),
90
- outputs=gr.Image(type="pil")
91
- ).launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
2
 
3
+ def greet(name):
4
+ return "Hello " + name + "!!"
5
 
6
+ iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
+ iface.launch()