Spaces:
Sleeping
Sleeping
brandonongsc
commited on
Commit
•
8eda296
1
Parent(s):
4b092a5
Update app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,7 @@
|
|
1 |
-
import matplotlib.pyplot as plt
|
2 |
-
import numpy as np
|
3 |
-
from six import BytesIO
|
4 |
-
from PIL import Image
|
5 |
-
import tensorflow as tf
|
6 |
-
from object_detection.utils import label_map_util
|
7 |
-
from object_detection.utils import visualization_utils as viz_utils
|
8 |
-
from object_detection.utils import ops as utils_op
|
9 |
-
import tarfile
|
10 |
-
import wget
|
11 |
import gradio as gr
|
12 |
-
from huggingface_hub import snapshot_download
|
13 |
-
import os
|
14 |
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
img_array = tf.keras.utils.img_to_array(pilimg)
|
21 |
-
img_array = np.expand_dims(img_array, axis=0)
|
22 |
-
return img_array
|
23 |
-
|
24 |
-
def load_image_into_numpy_array(path):
|
25 |
-
|
26 |
-
image = None
|
27 |
-
image_data = tf.io.gfile.GFile(path, 'rb').read()
|
28 |
-
image = Image.open(BytesIO(image_data))
|
29 |
-
return pil_image_as_numpy_array(image)
|
30 |
-
|
31 |
-
def load_model():
|
32 |
-
download_dir = snapshot_download(REPO_ID)
|
33 |
-
saved_model_dir = os.path.join(download_dir, "saved_model")
|
34 |
-
detection_model = tf.saved_model.load(saved_model_dir)
|
35 |
-
return detection_model
|
36 |
-
|
37 |
-
def load_model2():
|
38 |
-
wget.download("https://nyp-aicourse.s3-ap-southeast-1.amazonaws.com/pretrained-models/balloon_model.tar.gz")
|
39 |
-
tarfile.open("balloon_model.tar.gz").extractall()
|
40 |
-
model_dir = 'saved_model'
|
41 |
-
detection_model = tf.saved_model.load(str(model_dir))
|
42 |
-
return detection_model
|
43 |
-
|
44 |
-
# samples_folder = 'test_samples
|
45 |
-
# image_path = 'test_samples/sample_balloon.jpeg
|
46 |
-
#
|
47 |
-
|
48 |
-
def predict(pilimg):
|
49 |
-
|
50 |
-
image_np = pil_image_as_numpy_array(pilimg)
|
51 |
-
return predict2(image_np)
|
52 |
-
|
53 |
-
def predict2(image_np):
|
54 |
-
|
55 |
-
results = detection_model(image_np)
|
56 |
-
|
57 |
-
# different object detection models have additional results
|
58 |
-
result = {key:value.numpy() for key,value in results.items()}
|
59 |
-
|
60 |
-
label_id_offset = 0
|
61 |
-
image_np_with_detections = image_np.copy()
|
62 |
-
|
63 |
-
viz_utils.visualize_boxes_and_labels_on_image_array(
|
64 |
-
image_np_with_detections[0],
|
65 |
-
result['detection_boxes'][0],
|
66 |
-
(result['detection_classes'][0] + label_id_offset).astype(int),
|
67 |
-
result['detection_scores'][0],
|
68 |
-
category_index,
|
69 |
-
use_normalized_coordinates=True,
|
70 |
-
max_boxes_to_draw=200,
|
71 |
-
min_score_thresh=.60,
|
72 |
-
agnostic_mode=False,
|
73 |
-
line_thickness=2)
|
74 |
-
|
75 |
-
result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
|
76 |
-
|
77 |
-
return result_pil_img
|
78 |
-
|
79 |
-
|
80 |
-
REPO_ID = "brandonongsc/masknomask_detect_model"
|
81 |
-
detection_model = load_model()
|
82 |
-
# pil_image = Image.open(image_path)
|
83 |
-
# image_arr = pil_image_as_numpy_array(pil_image)
|
84 |
-
|
85 |
-
# predicted_img = predict(image_arr)
|
86 |
-
# predicted_img.save('predicted.jpg')
|
87 |
-
|
88 |
-
gr.Interface(fn=predict,
|
89 |
-
inputs=gr.Image(type="pil"),
|
90 |
-
outputs=gr.Image(type="pil")
|
91 |
-
).launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
+
def greet(name):
|
4 |
+
return "Hello " + name + "!!"
|
5 |
|
6 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|