23B718F / app.py
gregarific's picture
Create app.py
e439d41
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget
import gradio as gr
from huggingface_hub import snapshot_download
import os
import cv2
#PATH_TO_LABELS = 'data/label_map.pbtxt'
PATH_TO_LABELS = 'label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def pil_image_as_numpy_array(pilimg):
img_array = tf.keras.utils.img_to_array(pilimg)
img_array = np.expand_dims(img_array, axis=0)
return img_array
def load_image_into_numpy_array(path):
image = None
image_data = tf.io.gfile.GFile(path, 'rb').read()
image = Image.open(BytesIO(image_data))
return pil_image_as_numpy_array(image)
def load_model():
download_dir = snapshot_download(REPO_ID)
saved_model_dir = os.path.join(download_dir, "saved_model")
detection_model = tf.saved_model.load(saved_model_dir)
return detection_model
def load_model2():
wget.download("https://nyp-aicourse.s3-ap-southeast-1.amazonaws.com/pretrained-models/balloon_model.tar.gz")
tarfile.open("balloon_model.tar.gz").extractall()
model_dir = 'saved_model'
detection_model = tf.saved_model.load(str(model_dir))
return detection_model
# samples_folder = 'test_samples
# image_path = 'test_samples/sample_balloon.jpeg
#
def predict(pilimg):
image_np = pil_image_as_numpy_array(pilimg)
return predict2(image_np)
def predict2(image_np):
results = detection_model(image_np)
# different object detection models have additional results
result = {key:value.numpy() for key,value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.60,
agnostic_mode=False,
line_thickness=2)
result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img
def predict_on_video(video_in_filepath, video_out_filepath, detection_model, category_index):
video_reader = cv2.VideoCapture(video_in_filepath)
frame_h = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_w = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = video_reader.get(cv2.CAP_PROP_FPS)
video_writer = cv2.VideoWriter(
video_out_filepath,
cv2.VideoWriter_fourcc(*'mp4v'),
fps,
(frame_w, frame_h)
)
while True:
ret, frame = video_reader.read()
if not ret:
break # Break the loop if the video is finished
processed_frame = predict(frame)
processed_frame_np = np.array(processed_frame)
video_writer.write(processed_frame_np)
# Release camera and close windows
video_reader.release()
video_writer.release()
cv2.destroyAllWindows()
cv2.waitKey(1)
video_reader.release()
video_writer.release()
cv2.destroyAllWindows()
cv2.waitKey(1)
# Function to process a video
def process_video(video_path):
output_path = "output_video.mp4" # Output path for the processed video
predict_on_video(video_path, output_path, detection_model, category_index)
return output_path
REPO_ID = "gregarific/23B718FMod"
detection_model = load_model()
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)
# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')
#gr.Interface(fn=predict,
# inputs=gr.Image(type="pil"),
# outputs=gr.Image(type="pil")
# ).launch(share=True)
tab1 = gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Image(type="pil"),
title="Object Detection (WheelChair & Motorized WheelChair)",
examples=[["sample1.jpg"],["sample2.jpg"],["sample3.jpg"]],
description='Model Applied: SSD MobileNet V1 FPN 640x640.'
)
#gr.Interface(fn=predict,
# inputs=gr.Image(type="pil"),
# outputs=gr.Image(type="pil")
# ).launch(share=True)
tab2 = gr.Interface(
fn=process_video,
inputs=gr.File(label="Upload a Video"),
outputs=gr.File(label="Output Analysis"),
title='Object Detection (WheelChair & Motorized Wheelchair)',
examples=["Wheelchair Snippet.mp4"],
description='Model Applied: SSD MobileNet V1 FPN 640x640'
)
iface = gr.TabbedInterface([tab1, tab2], tab_names = ['Image','Video'], title='WheelChair Type Detection')
iface.launch(share=True)